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Abstract
Data-directed programs consist of collections of generic functions,
functions whose underlying implementation differs depending on
properties of their arguments. Scheme’s flexibility lends itself to
developing generic functions, but the language has some shortcom-
ings in this regard. In particular, it lacks both facilitiesfor con-
veniently extending generic functions while preserving the flexi-
bility of ad-hoc overloading techniques and constructs forgroup-
ing related generic functions into coherent interfaces. This paper
describes and discusses a mechanism, inspired by Haskell type
classes, for implementing generic functions in Scheme thatdi-
rectly addresses the aforementioned concerns. Certain properties of
Scheme, namely dynamic typing and an emphasis on block struc-
ture, have guided the design toward an end that balances structure
and flexibility. We describe the system, demonstrate its function,
and argue that it implements an interesting approach to polymor-
phism and, more specifically, overloading.

1. Introduction
Data-directed programs consist of collections ofgeneric functions,
functions whose underlying implementation differs depending on
properties of their arguments. In other words, a generic function
is overloadedfor different argument types. Data-directed style ap-
pears often in Scheme programs, even in the Scheme standard li-
brary. The standard generic arithmetic operators include functions
such as+ and*, which exhibit different behavior depending on what
kind of arguments they are applied to. For example, applying+ to
two integers yields an integer value; adding two complex values, on
the other hand, yields a complex value. A binary version of+ could
be implemented with the following general form:

(define +
(lambda (a b)

(cond
[(and (integer? a) (integer? b))
(integer-+ a b)]
[(and (complex? a) (complex? b))
(complex-+ a b)]
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...
[else (error "invalid arguments")])))

The body of+ is simply acond expression that tests its operands
for various properties and dispatches to the implementation upon
finding a match. Assuming specific implementations of addition for
integers and complex numbers, the function dispatches to integer
addition when the operands are integers, and complex numbers
when the operands are complex.1

For all their benefits, generic functions implemented usingcond

as above have their shortcomings. Such functions are not meant to
be extended to support new types of arguments. Nonetheless,such
a function may be extended at the top-level using ad-hoc means as
in the following:

(define +
(let ([old-+ +])

(lambda (a b)
(cond
[(and (my-number? a) (my-number? b))
(my-+ a b)]
[else (old-+ a b)]))))

A function may also be extended in a manner that limits the exten-
sion to the current lexical scope, as in the following:

(let ([+
(let ([old-+ +])

(lambda (a b)
(cond
[(and (my-number? a) (my-number? b))
(my-+ a b)]
[else (old-+ a b)])))])

(+ my-number-1 my-number-2))

The above examples assume a user-defined number, of which
my-number-1 and my-number-2 are instances, and amy-number?
predicate that tests for such numbers. Both versions of+ can handle
these new numbers. Although the second example only introduces
the new+ in the scope of thelet expression, the function could be
returned as a value from the expression and subsequently used in
other contexts.

These methods of extending+ are ad-hoc. They don’t directly
capture the intent of the programmer, and much of the contentis
boiler-plate code. Another issue with this style of extending data-
directed functions is that it does not respect the grouping of related
functions. For example, the+ operator is just one of a group of
arithmetic operators that includes*, -, and/ as well, and in general
they should be introduced and extended together. Using the above
method of introducing overloads, one must manually duplicate the

1 This model disregards the possible coercion of arguments tomatch each
other because such a mechanism is outside the scope of this work.
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idiom for each operator, resulting in duplicate boilerplate code and
no intentional structuring of the set of operators.

The Haskell [Pey03] language community has previously in-
vestigated overloading in the context of a statically typedlanguage
and as their answer to the problem produced thetype classfacil-
ity [WB89], which we describe later. Type classes are an elegant,
effective approach to overloading and have spawned significant re-
search that has advanced their capabilities [NT02, Jon00, CHO92].

This paper describes a language extension for Scheme that sup-
ports the implementation of groups of generic functions andtheir
overloads. This system is heavily inspired by Haskell’s type classes,
but is designed to function in a latently typed language, where types
appear as predicates on values. For that reason, we considerours to
be apredicate classsystem.

In order to fit with Scheme, this system differs from Haskell’s
type classes in some significant ways. Haskell is solely interested
in dispatch based on static type information. In contrast, the ad-
hoc method of constructing and extending generic functionscan
dispatch on arbitrary predicates, including standard predicates such
asnumber? andchar?, as well as user-defined predicates such as
my-number? from the earlier examples. The described system also
supports overloading based on arbitrary predicates. Also,whereas
Haskell emphasizes compile-time type checking, error-checking is
subservient to flexibility in this model. The overloading mechanism
described here eschews the conservative practice of signaling errors
before they are encountered at run time.

The combination of block structure, lexical scoping, and ref-
erential transparency plays a significant role in Scheme programs.
Some of the previously discussed ad-hoc methods show how over-
loading can be performed in Scheme and how those methods fall
short in lexical contexts. The predicate class system we present di-
rectly supports overloading functions under such circumstances.

Our overloading mechanism was implemented for Chez Scheme
using the syntax-case macro system [DHB92, Dyb92], an advanced
macro expansion system provided by some popular Scheme imple-
mentations that combines hygienic macro expansion [KFFD86]
with controlled identifier capture. Because our system is imple-
mented as macros, its semantics can be described in terms of how
the introduced language forms are expanded (See Section 6).

2. Contributions
The contributions of this paper are as follows:

• A language mechanism for overloading is described, inspired
by the type class model but modified to better match the ca-
pabilities and the philosophy of Scheme. Scoped classes and
instances that allow both classes and instances to be shad-
owed lexically is an interesting point in the design space. Fur-
thermore, expressing this facility in the context of a dynami-
cally typed language allows some interesting design options and
tradeoffs that are not available to statically typed languages.

• The described dynamic dispatch model combines the flexibility
of ad-hoc techniques available in Scheme with a more struc-
tured mechanism for overloading functions. Previous mecha-
nisms for overloading in Lisp and Scheme have pointed toward
a relationship to objects and object-oriented programming. Our
system supports dispatch based on arbitrary runtime properties.
Furthermore, the predicate class model groups related generic
functions into extensible interfaces.

• A point of comparison is provided between the overloading
mechanisms expressed in statically typed Haskell and dynami-
cally typed Common Lisp traditions.

3. A Brief overview of Haskell Type Classes
Haskell [Pey03] is a statically typed functional programming
language, featuring Hindley/Milner-style type inference[Mil78,
DM82] and its associated flavor of parametric polymorphism.
Haskell also, however, supports a form ofad-hocpolymorphism, or
overloading, in the form of type classes [WB89], which contribute
substantial expressive power to the language. In order to introduce
the concepts involved, and to provide a point of comparison,we
briefly describe the type class system.

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool
x /= y = not (x == y)
x == y = not (x /= y)

instance Eq Integer where
x == y = x ‘integerEq ‘ y

instance Eq Float where
x == y = x ‘floatEq ‘ y

elem :: (Eq a) => a -> [a] -> Bool
x ‘elem ‘ [] = False
x ‘elem ‘ (y:ys) = x==y || (x ‘elem ‘ ys)

Figure 1. Haskell type classes in action

Consider the problem of specifying and using operators for nu-
meric types, specifically the equality operator. Figure 1 illustrates
how the equality operator is specified for Haskell in its Standard
Prelude. First atype classis introduced. A type class is an interface
that specifies a set ofclass operators, generic functions associated
with a particular type class. The above type class definitionessen-
tially says “for all typesa that belong to the classEq, the operators
== and/= are overloaded with values of the specified type signa-
tures.” TheEq class defines default implementations for== and/=,
however in order to use them, a type must be explicitly declared to
overload the type class functions. This role is played byinstance
declarations. An instance declaration declares membership in the
type class and implementsinstance methods, specialized overloads
of the class operators. For example, the first instance declaration
for Integers declares thatInteger is a member of theEq class, and
provides an explicit overload for==. The== operator forInteger
values is implemented in terms of a hypotheticalintegerEq oper-
ator defined solely for integers.2 An analogous instance for floats
is also presented. Both instance declarations inherit the default/=
method, which will call the specific== overload associated with
the type. In fact one may legally omit the== implementation as
well, but then a call to either operator yields an infinite recursion.
Finally, theelem function, analogous to Scheme’smember, is pre-
sented. This generic function is not part of theEq type class, yet
still relies upon it. Its type,(Eq a) => a -> [a] -> Bool is quali-
fiedwith Eq and essentially says “elem is overloaded for all typesa
that belong toEq, in which case its type isa -> [a] -> Bool.”

4. Language Description
The predicate class mechanism introduced in this paper forms an
embedded language for overloading in Scheme and thus purelyex-
tends the existing language. This section introduces and describes
the forms with which we extend Scheme to provide type class-like
functionality. The extended language syntax is summarizedin Fig-
ure 2.

2 In Haskell, a binary function can be called in infix position by enclosing it
in single back quotes
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〈definition〉
+
→

(define-class (〈identifier〉 〈variable〉+)
〈op-spec〉+)

| (define-instance (〈identifier〉 〈expression〉+)
(〈method-name〉 〈expression〉)+)

| (define-qualified 〈identifier〉 (〈identifier〉+)
〈expression〉)

| (define-open-qualified 〈identifier〉 (〈identifier〉+)
〈expression〉)

〈expression〉
+
→

(let-class ([(〈identifier〉 〈variable〉+)
〈op-spec〉+])

〈body〉)

| (let-instance ([(〈identifier〉 〈expression〉+)
(〈method-name〉 〈expression〉)+])

〈body〉)

〈op-spec〉 → (〈operator-name〉 〈variable〉*)
| [(〈operator-name〉 〈variable〉*) 〈expression〉]

Figure 2. Syntax extensions for type classes in Scheme

4.1 Predicate Classes

A predicate class is a form that establishes an interface forover-
loading. Predicate classes are introduced using either thedefine-

class form, for top-level definitions, or thelet-class expression,
for lexically scoped definitions. The syntax that we use for these
constructs is as follows:3

(define-class (class-name pv ...)
op-spec

...)

(let-class ([( class-name pv ...)
op-spec ...])

expr ...)

Thedefine-class form introduces a new predicate class at the top-
level with the nameclass-name. Thelet-class form correspond-
ingly introduces a type class that is visible within the scope of its
enclosed body (expr ...). The name of the type class is followed
by a list ofpredicate variables(pv ...). A class’s predicate vari-
ables determine the number of predicate functions that willbe used
to establish an instance of a predicate class. The order of the pred-
icate variables matters, and corresponds directly to the order of the
predicates that are used to define an instance (as shown in thenext
section). Whereas Haskell type class instances are determined by
the type used in an instance definition, predicate classes are deter-
mined by a list of Scheme predicate functions. This corresponds
directly to the Haskell extension that supports multiple parameter
type classes [PJM97]. Following the name of the class and itslist
of predicate variables is a list ofclass operation specifications, sig-
nified above byop-spec. Each operation specification takes one of
the following two forms:

(op-name sym ...)

[( op-name sym ...) expr]

their purpose is to establish the names of the operators belonging to
the class, as well as to specify which arguments will be used to de-
termine dispatch based on which predicates. The second syntax for

3 Throughout the text, code uses square brackets ([]) and parentheses (())
interchangeably for readability. Several Scheme implementations, including
Chez Scheme, support this syntax.

operation specifications illustrates how to supply adefault instance
methodfor a class operation. Each symbolsym marks an argument
position for the operation. Any position marked with a predicate
variable will be used to determine dispatch to the proper instance
method. If a predicate variable is placed in an argument position,
then a call to that class operation will use that argument position
to test for instance membership: The instance predicate associated
with the given predicate variable will be applied to the passed ar-
gument. Instances of the class are tested until an instance is found
whose predicates return#t for each argument position marked with
a predicate variable. The dispatch algorithm implies that the order
in which instances are declared can affect the instance thata class
operator dispatches to. In this regard, the mechanics of dispatch are
analogous to thecond form of dispatch described earlier.

For example, consider the following rendition of theEq type
class in Scheme:

(define-class (Eq a)
[(== a a) (lambda (l r) (not (/= l r)))]
[(/= a a) (lambda (l r) (not (== l r)))])

This definition looks similar to the Haskell equivalent in Fig-
ure 1, but there are a few differences. A Haskell type class speci-
fication is used for type checking as well as dispatch. The class’s
type variable would be instantiated and used to ensure that code
that calls the class operators is type safe. In the case of theabove
Scheme code, however, the predicate variablea simply specifies
how to dispatch to the proper instance of a method. As written,
calls to the== method determine dispatch by applying the pred-
icate to both arguments. In some cases, however, the underlying
implementations all require both arguments to have the sametype.
Under that assumption, one can optimize dispatch by checking only
the first argument: the dispatched-to function is then expected to re-
port an error if the two values do not agree. The following example
shows how to implement such a single-argument dispatch:

(define-class (Eq a)
[(== a _) (lambda (l r) (not (/= l r)))]
[(/= a _) (lambda (l r) (not (== l r)))])

In the above code, the second reference toa in each of these
operations is replaced with the underscore symbol (_). Since the
underscore is not one of the specified predicate variables, it is
ignored. Symbols that do not represent predicates are most useful,
however, when dispatch is dependent on argument positions other
than the first. For example in the form:

(define-class (Eq a)
[(== _ a) (lambda (l r) (not (/= l r)))]
[(/= _ a) (lambda (l r) (not (== l r)))])

dispatch is determined by the second argument to the operations.
Under some conditions, it is useful to develop a class that dis-

patches on multiple predicates, rather than two. For example, con-
sider a type class that specifies overloaded operators that operate
on vector spaces. A vector space must take into consideration both
the sort of vector and scalar types used, and this can be done as
follows:

(define-class (Vector-Space v s)
[vector-add v v]
[scalar-mult s v])

Notice that in particular, scalar multiplication takes a scalar as its
first argument and a vector as its second. Classes that represent
multi-sorted algebras are bound to have one predicate for each sort.

4.2 Class Instances

A class instance is an implementation of overloads for a specified
predicate class that is associated with a particular list ofScheme
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predicates. they are introduced using thedefine-instance form or
thelet-instance expression. The syntax for these constructs is as
follows:

(define-instance ( class-name pred ...)
( method-name expr) ...)

(let-instance ([( class-name pred ...)
(method-name expr) ...])

expr ...)

Thedefine-instance form introduces a new top-level instance of
a previously declared class. Thelet-instance form correspond-
ingly introduces a new instance of a class for the scope of its
body (expr ...). An instance definition names the referent class
followed by a list of Scheme predicates–functions of one param-
eter that verify properties of objects. Built-in examples include
integer? andboolean?, but any function of one argument is ac-
ceptable (though not necessarily sensible). These predicates are
used during dispatch to find the proper overload.

Following the class name and list of predicates is a list of
method bindings for the class operations. The first component,
method-name specifies the name of an operation from the class
definition. The method binding,expr, should evaluate to a function
that is compatible with the operation specification from theclass
definition. The expressions that define instance methods become
suspended: the entire expression will be evaluated for eachcall
to the method, therefore any side-effects of the expressionwill
be repeated at each point of instantiation. Because this behavior
differs from that for traditional scheme definitions, the expression
that defines an instance method should simply be alambda form or
a variable. An instance declaration must have a method definition
for each class operation that has no default.

The following code shows an instance of the aboveEq class for
integers:

(define-instance (Eq integer ?)
(== =))

Following the above definition, applying== to integers will
dispatch to the standard= function. However, the class could be
redefined in a controlled context usinglet-instance as follows:

(let-instance ([(Eq integer ?)
(== eq ?)])

...)

Applications of== to integers in thelet-instance form body will
dispatch to the standardeq? function.

Class operations are not always open to additional overloads
in this system. As shown later, they are implemented as identifier
macros (also called symbolic macros), and when referenced expand
to an instantiation. When a class operation is instantiated, the
result is a function that may dispatch only to overloads of the
operation that are defined visible at the point of instantiation. In
particular, if a function definition calls a class operation, those
calls will recognize no new lexical instance declarations introduced
before the function itself is called. Continuing theEq class example,
consider the following program:

(define-instance (Eq char?) (== char =?))

(define elem
(lambda (m ls)

(cond
[(null? ls) #f]
[(== m (car ls)) #t]
[else (elem m (cdr ls ))])))

(let-instance ([(Eq char?) (== char-ci =?)])
(elem #\x (list #\X #\Y #\Z)))

First an instance ofEq is defined for character types, usingchar=?.
Next, theelem function is implemented. This function is analogous
to the Haskell function from Figure 1. Theelem function imple-
ments the same functionality as its Haskell counterpart, but due
to the instantiation model of instance methods, calls to thefunc-
tion will dispatch based on the instances visible at the point that
elem is defined. Thus, even though the next expression shadows
the instance declaration for characters, usingchar-ci=? to imple-
ment==, the call toelem still dispatches to the first instance dec-
laration, which uses the case-sensitive comparator, and the expres-
sion yields the result#f. Had the new instance been defined using
define-instance, thenelem would have used the case-insensitive
comparator, and the above expression would have yielded#t.

4.3 Qualified Functions

The previous example illustrates how class operators andlet

-instance expressions preserve lexical scoping. Unfortunately, this
introduces a difference between generic functions implemented
as class operators and generic functions that are implemented as
Scheme functions that apply class operators. It is beneficial to also
have generic Scheme functions implemented in terms of classoper-
ators, that exhibit the same overloading behavior as class operators.

Haskell functions are overloaded by expressing their implemen-
tations in terms of class operators. When overloaded, a function
type is then qualified with the type classes that define the operations
used in the function body. Recall theelem function defined in Fig-
ure 1. It has qualified type(Eq a) => a -> [a] -> Bool, which
expresses its use of type class operators.

Scheme functions require no such qualification to call class
operators, but we borrow the notion to express our more dynamic
generic functions, which we callqualified functions. Qualified
functions take one of the following forms:

(define-qualified fn-name ( class-name ...)
expr)

(define-open-qualified fn-name

(class-name ...)
expr)

The functionexpr defined by this form is qualified by the list
of classes(class-name...). Qualified functions have the same
overload model as class operators. When referenced inside a
let-instance form that overloads one of the qualifying classes,
a qualified function’s body can use the lexically introducedover-
loads. Qualified functions are also subject to instantiation. Inside a
qualified function, the operations from the list of qualifying classes
dispatch to the overloads visible at the point in the programwhere
the function isreferenced, rather than the point where the function
was defined. As such, the behavior of the function can be over-
loaded at or around call sites. Furthermore, the expressionthat
defines a qualified function is suspended in the same manner asfor
instance methods. It is thus expected that qualified functions will
be implemented withlambda forms. However, qualified functions
suffer this strange evaluation property in exchange for theability to
dynamically overload their behavior.

Revisiting theelem example from the previous section, the
function is now defined usingdefine-qualified:

(define-qualified elem (Eq)
(lambda (m ls)

(cond
[(null? ls) #f]
[(== m (car ls)) #t]
[else (elem m (cdr ls ))])))

The call to== within the function body will now dispatch based
on the instances visible at the point thatelem is called, rather than
where it was defined. Using this definition ofelem, the expression:
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(let-instance ([(Eq char?) (== char-ci =?)])
(elem #\x (list #\X #\Y #\Z)))

yields the value#t.
The following program illustrates a qualified function called in

two different instance contexts:

(define-qualified ==-3 (Eq)
(lambda (x y z) (and (== x y) (== y z))))

(cons (let-instance ([(Eq char?)
(== char-ci =?)])

(==-3 #\x #\X #\z))
(let-instance ([(Eq char?)

(== (lambda (a b)
#t))])

(==-3 #\x #\X #\z)))

The==-3 qualified function performs a 3-way equality comparison.
Both applications of==-3 take the same arguments, but each appli-
cation occurs within the scope of a different instance declaration.
This results in dispatch to two different implementations of the ==

method inside the body of the qualified function: the first perform-
ing a case-insensitive comparison and the second always yielding
#t. Evaluation of this expression yields the pair’(#f . #t).

A self-reference inside the body of a function defined with
define-qualified refers to the current instantiation of the func-
tion. However, if a function is defined withdefine-open-qualified,
then a self-reference results in a new instantiation of the qualified
function. Thus it is possible for such a qualified function tocall
itself with new instances in scope, as in the following (admittedly
bizarre) example:

(let-class ([(B p) (o p)])
(let-instance ([(B boolean ?)

(o (lambda (x)
’boolean ))])

(define-open-qualified f (B)
(lambda (x)

(cons
(o x)
(if x

(let-instance ([(B boolean ?)
(o (lambda (x)

x))])
(f #f))

’()))))
(f #t)))

The above expression defines a class,B, that specifies one operation
of one argument. It then establishes an instance of the classfor
booleans and defines a functionf that is qualified over instances of
the class. Callingf with the value#t results in a call to the instance
method in the scope of only the outerlet-instance definition. The
result of this call, the symbol’boolean, is paired with the result of
recurring onf, this time in the scope of an instance that implements
the instance methodo as the identity. The final result of these
gymnastics is the list’(boolean #f). Whether this functionality
serves a useful purpose is a subject of future investigation.

5. Examples
Under some circumstances, a set of instance methods will be im-
plemented such that each applies its own associated class operator.
This makes sense especially when defining class instances for data
structures that contain values for which instances of the same class
exist. For instance, consider the following implementation of Eq for
Scheme lists:

(define-instance (Eq list?)
[== (lambda (a b)

(cond
[(and (null? a) (null? b)) #t]
[(or (null? a) (null? b)) #f]
[else (and (== (car a) (car b))

(== (cdr a) (cdr b)))]))])

This instance ofEq requires that== be overloaded for every element
of the list. The nested calls to== in the Scheme implementation are
resolved at runtime and will fail if the arguments are not members
of theEq class.

Scheme lists result simply from disciplined use of pairs and
the null object (’()). As such, a more fitting implementation of
equality would handle pairs and the null object separately,as in the
following:

(define-instance (Eq null?)
[== (lambda (a b) (eq? a b))])

(define-instance (Eq pair?)
[== (lambda (a b)

(and (== (car a) (car b))
(== (cdr a) (cdr b))))])

Scheme programs often use lists as their primary data structure,
and operate upon them with higher order functions, especially
the standardmap function. Nonetheless, lists are only one data
structure among others, trees for instance, and it may be desirable
to map a function over other such data structures. The Haskell
standard library specifies an overloaded implementation ofmap,
calledfmap, which varies its implementation depending on the data
structure over which it maps. Haskell supports overloadingon type
constructors[Jon93], and this functionality is used to implement
generalized mapping.

In Haskell, thefmap function is the sole operator of theFunctor
constructor class, which is defined as follows:

class Functor f where
fmap :: (a -> b) -> f a -> f b

The proper implementation offmap for lists is the standardmap
function, and the instance for lists is simple:

instance Functor [] where
fmap = map

where[] is the type constructor for lists.
What follows is a Scheme implementation offmap in the same

style as the Haskell version:

(define-class (Functor p)
(fmap fn p))

(define-instance (Functor list?)
(fmap map))

In order to match standard Schememap, fmap is not curried. The
analogous instance declaration for Scheme lists is shown above.
Scheme has no notion of type constructor analogous to that in
Haskell. This is especially clear in that Scheme lists are hetero-
geneous: any given list can contain any Scheme value, regardless
of its type. Though Haskell considers type constructor to bedistinct
from types, Scheme has no such distinction, and a simple predicate,
such aslist? for lists, suffices.

Given the above definition ofFunctor, one might define a tree
data type and an overload offmap for it as follows:

(define-record tree-branch (left right))
(define-record tree-leaf (item))

(define-instance (Functor tree-branch?)
(fmap

(lambda (fn branch)
(make-tree-branch



6

(fmap fn (tree-branch-left branch))
(fmap fn

(tree-branch-right branch ))))))

(define-instance (Functor tree-leaf?)
(fmap

(lambda (fn leaf)
(make-tree-leaf
(fn (tree-leaf-item leaf ))))))

(fmap add1 (list 1 2 3))

(fmap (lambda (x) (fmap add1 x))
(make-tree-branch
(make-tree-leaf (list 1 2 3))
(make-tree-leaf (list 4 5 6))))

This example uses Chez Scheme’s record facility for definingdata
types. The syntax:

(define-record rname (slotn ...))

defines a new data type and along with it a constructormake-rname,
a type predicatername? that returns#f for any other scheme type,
and accessors of the formrname-slotn for each element. Most
Scheme implementations supply similar facilities.

First, two data types with which trees can be described,tree-

branch and tree-leaf, are defined. Then for each of these data
types an instance ofFunctor is defined. Each instance’s implemen-
tation offmap constructs a new record from the result of recursively
applyingfmap to its components. Finally, two examples of calls to
fmap are shown. They yield the expected results: a data structureof
the same shape with each number incremented by one.

The Common Lisp Object System (CLOS) [GWB91] is another
example of a LISP system that provides support for generic func-
tions and overloading. CLOS is an object-oriented system whose
dispatch is primarily based on class identity, but it also supports the
overloading of generic functions on based on specific values. For
example, the CLOS method:

(defmethod == ((x number) (y (eql 7)))
’never)

defines an overload of the== generic function that is called when-
ever the first argument is a number and the second argument is ex-
actly equal to the number 7.

Since the system described here supports arbitrary predicates,
it too can implement such overloads. The following Scheme code
mimics the above:

(define-class (Eq a b)
(== a b))

(define is-seven? (lambda (x) (eq? x 7)))
(define-instance (Eq number? is-seven?)

[== (lambda (x y) ’never)])

A new version of theEq class uses two predicate variables in order
to establish the two separate overloads. Then an instance ofEq is
declared using thenumber? predicate and a hand-crafted predicate
that checks for equality to7.

6. Translating Predicate Classes to Standard
Scheme

Since the predicate class facility that we describe here is imple-
mented using Scheme macros, programs that use them correspond
directly to traditional Scheme code, the output of macro expansion.
In this section, we illustrate how programs written using this sys-
tem can be understood in terms of the resulting Scheme code.

The system implementation relies on the syntax-case macro
expander’s controlled variable capture, as well asdefine-syntax

macro definitions scoped within function bodies. However, forms
like let-class andlet-instance could be similarly implemented
in terms ofletrec-syntax.

A class definition form,define-class or let-class, introduces
two artifacts to the final program. First, an empty class table is
created. In this system, a class table is a list of entries, one for each
instance of a class. Each entry in the table is a pair of vectors: a
vector of predicates, and a vector of instance methods.

The class definition form also introduces a predicate dispatch
function for each operation specified. Based on the operation spec-
ification, a function is created that searches the class table, trying
to find a set of predicates that match the arguments passed to the
function.

For example, consider again theEq class:

(define-class (Eq a)
[(== a _) (lambda (l r) (not (/= l r)))]
[(/= _ a) (lambda (l r) (not (== l r)))])

For illustration purposes, the== operation dispatches on its first
argument but the/= operation dispatches based on its second.
The code resulting from this form is similar to what is shown in
Figure 3.

The class definition introduces a class table, namedEq-table,
which starts out empty. Next, the default instance methods are
defined. Each default becomes the body of a lambda expression
that takes a class table in order to implement recursion among
the instance methods. Then for each class operation,== and /=,
a dispatch function is introduced. This function is curried, first
accepting a class table and then an arbitrary list of arguments. The
bodies of the dispatch functions traverse the instance entries in the
class table, searching for a match between the predicatea and the
dispatch argument. Both dispatch functions access the predicatea
as the first element of the vector of predicates. Since== dispatches
based on its first argument,==-dispatch runs the predicate on
(car args), the first argument to the function, but/=-dispatch
runs the same predicate on(cadr args), its second argument.
If the class had more than one predicate, each predicate would
be tried on its corresponding argument in an attempt to detect a
matching instance. Finally,==-dispatch applies to its arguments
the first method in the method vector,op-vec, whereas/= applies
the second method. Each instance is passed the current classtable
in order to properly support recursion among instance methods.

The instance definition forms,define-instance and let-

instance, introduce new methods to the class instance table and
ensure that those instances are visible. To do so, an instance defini-
tion produces code that updates the class instance table anddefines
identifier macros for each class operation. These macros, which
are not shown for they are implementation details, cause class op-
erations to recognize the new instance. For example, consider the
following expression:

(let-instance ([(Eq integer?)
(== =)])

(cons
(list (== 5 6) (/= 5 6))
(list == /=)))

This program introduces an instance of theEq class based on the
standardinteger? predicate, assuming the previously described
definition of the class. The= function is named as the implementa-
tion of the== operator, and the/= is left undefined, thereby relying
upon the default method. Within the scope of this instance defi-
nition, both== and/= are called with integer arguments, and the
results are collected alongside their instantiations.
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(define Eq-table ’())

(define ==- default
(lambda (Eq-table)

(lambda (l r) (not ((/=- dispatch Eq-table) l r)))))

(define /=- default
(lambda (Eq-table)

(lambda (l r) (not ((==- dispatch Eq-table) l r)))))

(define ==- dispatch
(lambda (Eq-table)

(lambda args
(letrec ([loop

(lambda (table)
(let ([ pred-vec (caar table)]

[op-vec (cdar table)])
(cond
[(null? table) (error "No matching instance...")]
[(( vector-ref pred-vec 0) (car args))
(apply (( vector-ref op-vec 0) Eq-table) args)]

[else (loop (cdr table ))])))])
(loop Eq-table)))))

(define /=- dispatch
(lambda (Eq-table)

(lambda args
(letrec ([loop

(lambda (table)
(let ([ pred-vec (caar table)]

[op-vec (cdar table)])
(cond
[(null? table) (error "No matching instance...")]
[(( vector-ref pred-vec 0) (cadr args))
(apply (( vector-ref op-vec 1) Eq-table) args)]

[else (loop (cdr table ))])))])
(loop Eq-table)))))

Figure 3. Expansion of theEq class

The following roughly illustrates the expansion of the above
expression:

(let ([ Eq-table
(cons
(cons (vector integer ?)

(vector (lambda (Eq-table) =)
/=-default ))

Eq-table)])
(cons

(list ((==- dispatch Eq-table) 5 6)
((/=- dispatch Eq-table) 5 6))

(list (==- dispatch Eq-table)
(/=- dispatch Eq-table))))

First the above code adds a new entry to the instance table reflect-
ing the structure of the supplied instance. The entry is acons of
two vectors. The first contains theinteger? predicate, or more
generally all the predicates needed to describe the instance. The
second vector holds the operators, in the same order as specified
in define-class (instance operators may be specified in any or-
der and they will be appropriately reordered). This entry isthen
added to the front of the table and bound to a new lexical variable
Eq-table. As with the default method implementations, the user-
supplied implementation of the== method becomes the body of a
lambda. Since no implementation is provided for/=, the default
implementation is substituted.

In this new lexical scope, identifier macros for the operators ==
and/= are introduced. These macros handle instantiation of class
operators when they are referenced. Thus, following all macro ex-

pansion, the calls to the operators in the original code are trans-
formed to calls to the dispatch functions, passing along theproper
class table, and then applying the result to the intended arguments.
As previously mentioned, class operations are not first class enti-
ties. Class operations are implemented using identifier macros, so
each class operation expands to replace any reference to it with an
expression that applies its associated dispatch function to the class
table.

Thedefine-instance form differs from its lexical counterpart
in that it updates the class table in place. For example, the instance
illustrated above could also be written as follows:

(define-instance (Eq integer ?)
(== =))

And its expansion is as follows:

(set! Eq-table
(cons
(cons (vector integer ?)

(vector (lambda (Eq-table) =)
/=-default ))

Eq-table))

Rather than lexically binding a new table to extend the old one, it
applies side effects to the existing table to add the new instance
entry.

Thedefine-qualified form introduces functions that look up
class operation overloads visible at the point where the function is
referenced, rather than where the function is defined. To implement
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such functionality, this form introduces an implementation function
that takes one class table argument for each class that qualifies it.
Consider, for example, the following qualified function:

(define-qualified assert-equal (Eq)
(lambda (a b)

(if (/= a b)
(error "Not equal!"))))

This function uses whatever instance ofEq matches its arguments
at its instantiation point to test them for inequality. Thisprogram
expands to the following:

(define assert-equal-impl
(lambda (Eq-table)

(letrec
([ assert-equal

(lambda (a b)
(if ((/=- dispatch Eq-table) a b)

(error "Not equal!")))])
assert-equal)))

The define-qualified form generates the above function, which
takes a class instance table and uses it to dispatch to the proper
implementation of the/= method, as reflected by the call to
/=-dispatch. The body of assert-equal is wrapped within a
letrec form and bound to the nameassert-equal so that self-
references refer to the current instantiation. At the top-level, the
nameassert-equal is bound to a macro whose expansion applies
the implementation function to the class table. For example, con-
sider the following expression:

(cons (assert-equal 5 5)
assert-equal)

Its expansion takes the following form:

(cons (( assert-equal-impl Eq-table) 5 5)
(assert-equal-impl Eq-table))

The references toassert-equal expand to apply the implemen-
tation function,assert-equal-impl, to the newly extended class
table.

Theassert-equal qualified function can be implemented using
thedefine-open-qualified form as follows:

(define-open-qualified assert-equal (Eq)
(lambda (a b)

(if (/= a b)
(error "Not equal!"))))

Then only the expansion of the implementation function differs, as
shown in the following:

(define assert-equal-impl
(lambda (Eq-table)

(lambda (a b)
(if ((/=- dispatch Eq-table) a b)

(error "Not equal!")))))

In this case, the body of the function is no longer wrapped within
a letrec form. Thus, calls toasset-equal within the body of the
function refer to the aforementioned macro and are expandedas
described above.

7. Related Work
Although type classes in particular have been studied in thestat-
ically typed functional programming languages, overloading in
general has also been added to dynamically typed programming
languages.As mentioned earlier, for example, the Common Lisp
Object System (CLOS) provides many of the benefits of an object-
oriented programming language. Its design differs from other

object-oriented languages in that operations are implemented using
generic functionsin the form of overloaded methods. These meth-
ods differ from the methods of most object-oriented languages
in that they are not represented as messages passed to an object.
Rather they are applied like Lisp functions, but each generic func-
tion name can refer to multiple method definitions, each supplied
with a different set ofparameter specializers. This mechanism
applies to more than user-defined Lisp classes. Lisp methodscan
also be overloaded based on native Lisp types as well as equal-
ity requirements. Furthermore, specialization can be determined
based on arbitrary argument positions in a method. As such, some
consider the CLOS generic functions to be a generalization of the
typical object-oriented style.

The following code illustrates the implementation of generic
methods in Common Lisp:

(defmethod == ((x number) (y number))
(= x y))

(defmethod == ((x string) (y string))
(string-equal x y))

(defmethod != (x y)
(not (== x y)))

(defmethod == ((x number) (y (eql 7)))
’never)

Thedefmethod special form is the means by which Common Lisp
code expresses generic functions. Each call todefmethod intro-
duces an overload. The first two lines establish overloads for the
== function, one for numbers and one for strings. Each indicates
its overload by listing the types of its arguments, and uses the ap-
propriate concrete function to implement the overload. Next, a !=

generic function is implemented with one overload that places no
constraints on its arguments. Its body is expressed in termsof the
previously defined== function. Finally, a curious overload of the
== function specifies different behavior if its second argument is
the number7. Given this definition, the expression(== 7 7) yields
the symbol’never.

Although standard Scheme does not specify a mechanism for
implementing overloaded functions, rewrites of the CLOS mecha-
nism are available for certain Scheme implementations [Xer, Bar]).

Overloading functions in Scheme has been the subject of pre-
vious research. In [Cox97], a language extension for Schemeis
described that adds a mechanism for overloading function defini-
tions. The formslambda++ anddefine++ extend the definition of
an existing function, using either user-supplied predicates or an in-
ferred predicate to determine the proper implementation. In this
regard it is similar to the Common Lisp Object System. However,
it differs from CLOS in that the implementation combines allover-
loads at compile time and generates a single function with all dis-
patch functionality inline. Our design is fully implemented within
a macro system, whereas this extension requires modifications to
the underlying Scheme implementation.

Other programming languages have also investigated models
of overloading. Cecil [Cha93] is a prototype based (or classless)
object-oriented programming language that features support for
multi-methods [Cha92]. It differs from systems like CLOS inthat
each method overload is considered to be a member of all the ob-
jects that determine its dispatch. These methods thus have privi-
leged access to the private fields of those objects. Cecil hasa very
flexible notion of objects, and since objects, not types, determine
dispatch for Cecil multi-methods, it can capture the full capability
of CLOS generic functions, including value equality-basedparam-
eter specializers. Furthermore, Cecil resolves multi-method calls
using a symmetric dispatch algorithm; CLOS uses a linear model,
considering the arguments to a call based on their order in the ar-
gument list.
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MultiJava [CLCM00] is an extension to the Java [GJSB00]
programming language that adds support for symmetric multi-
ple dispatch, as used in Cecil. This work emphasizes backward-
compatibility with Java, including support for Java’s static method
overloading mechanism alongside dynamic multi-method dispatch.

Recently, the languageF G [SL05], an extension of the poly-
morphic typed lambda calculi of Girard and Reynolds [Gir72,
Rey74], introduced mechanisms similar to the design described
here. It introducesconcept andmodel expressions, which are anal-
ogous tolet-class and let-instance. It also adds a notion of
generic functions, which are analogous to our qualified functions,
as well as closely related to Haskell overloaded functions.Generic
functions can have qualified type parameters much like Haskell,
but the dispatch to its equivalent of instance operators is also based
on the instances visible at the point of a function call. Generic
functions do not have a notion of instantiation however: they have
first class status and can be called elsewhere yet still exhibit their
dynamic properties. The languageF G is statically typed but its
type system does not perform type inference. In this language, in-
stances of a class that have overlapping types cannot exist in the
same lexical scope. Our system allows them, but recognizes that
they may lead to undesirable results. Furthermore,F

G does not
have top-level equivalents todefine-class anddefine-instance.

In [OWW95], an alternative facility for overloading in the con-
text of Hindley/Milner type inference is described. The language,
named System O, differs from Haskell type classes in that over-
loading is based on individual identifiers rather than type classes.
A function may then be qualified with a set of identifiers and signa-
tures instead of a set of type class constraints. Compared toHaskell
type classes, System O restricts overloading to only occur based
on the arguments to a function. Haskell, in contrast, supports over-
loading on the return type of a function. As a result of SystemO’s
restrictions, it has a dynamic semantics that can be used to reason
about System O programs apart from type checking. Haskell type
class semantics, on the other hand, are intimately tied to the type
inference process. Because of this, it is also possible to prove a
soundness result with respect to the type of System O programs.
Furthermore, every typeable term in a System O program has a
principal type that can be recovered by type inferencing (types must
be explicitly used to establish overloads however).

System O’s dynamic semantics are very similar to those of the
system we describe. Overloaded functions are introduced using the
form:

inst o : s = e in p

whereo is an overloaded identifier,s is a polymorphic type,e is the
body of the overload, andp is a System O expression in which the
overload is visible. This form is analogous to ourlet-instance

form. However,inst introduces an overload only on identifiero,
whereaslet-instance defines a set of overloaded operators as
described by the specified class.

Overload resolution in System O searches the instances lexi-
cally for a fitting overload, much like our system does. As such,
System O’s dynamic semantics allow shadowing of overloads,as
our system does, but the type system forbids this: overloadsmust
be unique. System O’s overloaded operators are always dispatched
based on the type of the first argument to the function. Our system,
however, can dispatch based on any argument position, and uses ar-
bitrary predication to select the proper overload. Also, our system
can use multiple arguments to determine dispatch. Finally,though
System O’s dynamic semantics closely match those of our system,
it can be still be implemented as a transformation to the moreeffi-
cient dictionary-passing style that is often used to describe Haskell
type classes.

Some Scheme implementations provide thefluid-let form,
which supports controlled side-effects over some dynamic extent.
To understand howfluid-let behaves, consider the following
program and its result:

(let ([x 5])
(let ([get-x (lambda () x)])

(cons (fluid-let ([x 4]) (get-x))
(get-x))))

=> (4 . 5)

The code above lexically bindsx to the value5, and bindsget-x
to a function that yieldsx. Then, two calls toget-x are combined
to form a pair. The first is enclosed within afluid-let form. The
fluid-let form side-effectsx, setting its value to4 for the dynamic
extent of its body. The result of thefluid-let form is the result
of its body, but before yielding its value,fluid-let side-effectsx
again, restoring its original value. Thus, the code:

(fluid-let ([x 4]) (get-x))

is equivalent to the following:

(let ([ old-x x] [t #f])
(set! x 4)
(set! t (get-x))
(set! x old-x)
t)

The value of x is stored before assigning4 to it. Thenget-x is called
and its value stored before restoringx to its old value. Finally the
expression yields the result of(get-x).

This mechanism is in some respects comparable to our predicate
class mechanism. For example, consider the following program:

(let ([== #f])
(define is-equal?

(lambda (a b) (== a b)))
(fluid-let ([==

(lambda (a b)
(if (number? a)

(= a b)))])
(is-equal? 5 5))))

It binds the lexical variable== to a dummy value,#f. Then a
function is-equal? is implemented in terms of==. Finally == is
effected viafluid-let, and within its extent,is-equal? is called.
This entire expression evaluates to#t. Compare the above program
to the following, which is implemented using predicate classes:

(let-class ([(Eq a) (== a _)])
(define-qualified is-equal? (Eq)

(lambda (a b) (== a b)))
(let-instance ([(Eq number?) (== =)])

(is-equal? 5 5)))

It yields the same result as thefluid-let example. Here,== is
introduced using thelet-class form. Also, is-equal? is now
implemented as a qualified function. Thenlet-instance replaces
the fluid-let form. Due to this example’s simplicity, the extra
machinery of predicate classes exhibits some syntactic overhead,
but programs involving more structure and content may be better
formulated using type classes than usingfluid-let to manually
implement the same functionality.

8. Conclusion
Predicate classes loosely determine what properties may guide
function dispatch. Traditional object-orientation determines dis-
patch based on one entity involved in a method call: the classto
which the method belongs. Some operations, however, require dis-
patch based on more than the type of one entity. Idioms such as
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the Visitor pattern [GHJV95] have been invented to support dis-
patch based on multiple types in object-oriented languages. Haskell
type classes support dispatch based on all the arguments to afunc-
tion. However, they specifically rely upon the types of function ar-
guments to guide dispatch. Types can encode some sophisticated
properties of objects, including relationships between them, but
they cannot capture all runtime properties of programs. Common
Lisp generic functions also dispatch on the types of arguments, but
as shown earlier, they also support predication based on thepartic-
ular value of an argument. In this regard, some runtime properties
of values are available for dispatch. In our system, any Scheme
predicate, meaning any function of one argument that might yield
#f, can be used to define an instance. Thus, any predicate that is
writable in the Scheme language can be used to guide dispatch.
Predicates may mimic types, as in the standard Scheme predicates
like integer?, and one may also compare an argument to some
constant Scheme value, just as in Common Lisp. As such the mech-
anism described here can subsume much of the generic function
mechanism in Common Lisp. The Common Lisp Object System,
however, orders function specializations based on the inheritance
hierarchy of any objects passed as arguments as well as theiror-
dering in the function call. This differs from the Scheme system,
which matches symmetrically across all predicates but alsorelies
upon the ordering of and lexical distance to instance definitions.
Thus, one may mimic this behavior, but such simulation depends
upon the ordering of instance definitions.

The structure imposed by predicate classes provides a means
to capture relationships between operations. Related functional-
ity can be described as a unit using a class and subsequently im-
plemented as instances of that class. Applications can thususe
predicate classes to organize problem domain abstractionssystem-
atically and render them in program text. Such is the organiza-
tional power commonly associated with object-orientation; how-
ever, CLOS implements an object-oriented system that places less
emphasis on the discipline of grouping functionality, preferring to
focus on the expressiveness of generic function dispatch. The pred-
icate class mechanism expresses the organization of objects but re-
tains the emphasis on functions, rather than objects, generally as-
sociated with functional programming.

The flexibility of dynamic typing must, however, be weighed
against the limitations imposed by a lack of static information dur-
ing compilation. A static type system imposes some limitations on
how programs can be written, but this rigidity in turn yieldsthe abil-
ity for the language implementation to infer more properties from
programs and use this extra information to increase expressiveness.
For example, consider the following sketch of the standard Haskell
Num type class:

class Num a where
...
fromInteger :: Integer -> a
...

TheNum type class has operations whose arguments do not con-
tain enough information to determine how dispatch will proceed.
Specifically, thefromInteger method, when applied to anInteger
value, yields a value of typea, wherea is the overload type. Since
this method always takes only an integer, it relies on the return type
to distinguish overloads, a feature that our system does notsupport.
In order to implement something like the above in Scheme, theop-
erations must take an additional argument that determines dispatch:

(define-class (Num a)
...

(fromInteger a i)
...)

Here, thefromInteger method has an extra parameter, which must
be the type to which the supplied integer is converted. Such acon-
tortion is significantly less expressive than the Haskell analogue: a
value of the proper type must be available in order to convertan-
otherInteger to it. This value’s sole purpose is to guide dispatch.
The change gives theNum class an object-oriented feel and muddies
the abstraction with implementation details.

In the case of multiple parameter classes, operations need not
be dependent upon all the class predicates. Despite interest in and
known uses for multiple parameter type classes for Haskell,as
well as support for them in several implementations, type checking
of programs that make use of them is undecidable in the general
case. Nonetheless they are considered useful, and various means
have been proposed to make them tractable [Jon00, PJM97, DO02,
CKPM05]. In the Scheme system, lack of dispatch informationcan
also be problematic, especially if multiple instances of the class
have overlapping predicates. A call to an operation with this sort
of ambiguity results in the most recent instance’s operation being
called. An implementation of this system could recognize such
ambiguities and report them as warnings at compile-time andas
errors at runtime, but the system we describe here does not.

In Haskell, a class instance method can be overloaded for some
other class. In this manner, even a particular method can utilize
ad-hoc polymorphism in its implementation. Since methods in the
Scheme system are implemented using macros, it is not possible
to implement an instance method as a qualified function. One may
use such a function as a class method, but it will be bound to a
particular class table at the point of its definition so it will not be
dynamic over its class qualifications.

As with Haskell, classes that qualify a function must not have
overlapping operation names. However, multiple classes whose op-
eration names overlap can be defined, but the behavior for this situ-
ation is rather idiosyncratic. Suppose two predicate classes share an
operation name. Then at any point in the program, the method name
corresponds to the class with the instance that is most recently de-
fined (at the top level usingdefine-instance) or most closely de-
fined (usinglet-instance). Thus, instance definitions introduce,
or re-introduce, their method names and in doing so shadow the
value most recently associated with those names. One may still use
commonly-named methods from multiple classes, but this requires
the lexical capture of one class’s instance method prior to defining
an instance of the other class.

Haskell type classes model more of the functionality typical
of object-oriented mechanisms than the described Scheme system.
For example, type classes can derive from other type classes, much
as an object-oriented class can be derived from another using inher-
itance. The predicate class mechanism does not support the deriva-
tion of one type class from another, but this functionality could be
added to the system.

Combining the top-level class and instance definitions of Haskell
with lexically scoped class and instance definitions increases ex-
pressive power. The ability to override an instance declaration as
needed lends flexibility to how applications are designed. For ex-
ample, an application may establish some problem-specific abstrac-
tions using classes and provide some default instances for them to
handle the common cases. Nonetheless, any portion of the appli-
cation that uses instance methods or qualified functions maynow
override the default instances in a controlled fashion as needed.
Haskell could also benefit from this capability, though we are un-
aware of any investigation of such functionality for Haskell.
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