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Abstract
Most of the existing literature about monadic programming
focuses on theory but does not address issues of software
engineering. Using monadic parsing as a running example,
we demonstrate monadic programs written in a typical style,
recognize how they violate abstraction boundaries, and re-
cover clean abstraction crossings through monadic reflec-
tion. Once monadic reflection is made explicit, it is possi-
ble to construct a grammar for monadic programming that is
independent of domain-specific operations. This grammar,
in turn, enables the redefinition of the monadic operators as
macros that eliminate at expansion time the overhead im-
posed by functional representations. The results are very ef-
ficient monadic programs; for parsing, the output code is
competitive with good hand-crafted parsers.

1. Introduction
The use of monads to model effect-laden computation has
become commonplace. This work aims to show that a fuller
appreciation of the theory of monads can improve the cor-
rectness and efficiency of such implementations. We ex-
plore this through a single application domain: parsing. First,
we approach parsing from the functional perspective. Next,
we observe some of the shortcomings of overly simplistic
monadic programming and observe what happens when we
change our language to fit the theory more closely. We then
explore the efficiency improvements such a foundation al-
lows us. Finally, we point toward how the parsing example
we use may be generalized.

Most of the presentation in the following section is not
new. Using monads for parsing has been discussed in detail
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by Wadler [18], Hutton [7] and Meijer [8, 9], and Bird [1]. In
a change from these presentations, however, the programs in
this paper are written in the strict language Scheme [10] and
include uses of Scheme’s syntactic-extension mechanism
(macros). We paraphrase the material from these other texts
in order to familiarize the reader with our terminology and
notation.

One might reasonably ask why, when exploring a topic
that involves very typeful monads and their associated op-
erators, would the presentation use the dynamically-typed
language Scheme? The answer is two-fold. First, the goals
of this work are more in the realm of software engineer-
ing than theory. The monads and types are useful vehi-
cles for understanding the programs, but the true target is
easy-to-write, easy-to-maintain, efficient software. Choos-
ing Scheme should notpreventthe use of monads for struc-
turing programs. Second, this presentation relies heavilyon
syntactic abstraction as a means of turning programming
patterns into language extensions, which can then be re-
implemented as more efficient patterns. Such an approach is
sadly impossible in any common statically-typed language.

In Section 3 we draw an analogy between monads and
abstract data types. Such an analogy is not new; the exam-
ple of the simple state monad with “get” and “set” opera-
tions is often presented as an abstract data type. The prob-
lem is that in larger, more realistic examples—such as func-
tional parsing—the number of operations that requires ac-
cess to the monad’s underlying representation is much larger.
When seen in this light, it becomes clear that a significant
portion of the typical monadic-style program is treated as
if it falls inside the abstraction boundary of the abstract
data type. To complicate matters, it is very difficult for the
provider of the monad data type to guess every operation
that real client code might need. A review of the defini-
tion of monads leads us to monadic reflection, which pro-
vides the right tools to draw a new boundary between the
very few core monad operations and the many operations
that need to be partially aware of the monad’s underlying
representation. We rewrite portions of the code from Sec-
tion 2 in a cleaner style using monadic reflection. The re-
flection operators, together with the standard monadic pro-
gramming operators, provide enough expressiveness for us
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to construct a grammar for the sublanguage of monadic
programs. This grammar supports three-layer monadic pro-
gramming: the monad definition itself, representation-aware
operators, and representation-independent client code. The
three-layer model stands in contrast to the typical two-layer
model where everything other than the client code is treated
as part of the core monad definition.

Once we have a specification of monadic programs, we
are in a good position to optimize them. This we do by
changing the definitions of the monadic operators in Sec-
tion 4 while leaving their interfaces intact. All unnecessary
closure creation is eliminated, and the work of threading
store/token-stream values through the computation is han-
dled entirely at expansion time in the new definitions. Pro-
grams that conform to our monadic-programming grammar
need not be rewritten at all to benefit from the optimizations.
Furthermore, all the optimizations are handled at the source
level by user-defined macros, not by a new compiler pass.
The approach described here is relevant for any composition
of store-like monads, possibly composed with a lifting or er-
ror monad.

2. Parsing
Parsers are often described as functions from token streams
to abstract syntax trees:

Parser = Tokens → Tree

This characterization does not account for parsers modifying
the token stream. That is, by the time the parser produces
a tree, the token stream no longer has its original contents.
Thus, the type needs to be revised:

Parser = Tokens → Tree × Tokens

It could be the case, though, that the parser fails to construct
a tree (for example, if the input is malformed). To handle this
possibility, we lift theTree type toTree + ErrMsg :

Parser = Tokens → (Tree + ErrMsg) × Tokens

(This compact type will continue to appear in the remainder
of this article, but for efficiency the programs actually use

Parser =
Tokens → (Tree × Tokens) + (ErrMsg × Tokens)

which is isomorphic to the prior type by the distributive
property.)

The preceding paragraph follows the standard sequence
of types and justifications to arrive at a desirable type for
parsers,1 but we find that the effect is to direct one’s attention

1 Allowing a failed parse to return a new token stream is not really standard
in the literature. Why do we allow it here? Because implementations based
on real imperative input streams often modify the stream even on a failed
parse. In fact, such behavior is often desirable in a robust parser, to eliminate
nonsense tokens from the input and continue to make progress.

the wrong way. We want primarily to think about the parser’s
results. Parsers, however they operate, produce trees. Yet
most of the type we specified for parsers is not about trees;
it’s about the wiring that gives us the trees. Instead, let’sjust
say thatparsing (not parsers) is one way to describe tree-
producing computation. Henceforth, we shall refer to tree-
producing computations (or justtree producers) instead of
parsers.

Trying to talk about computations presents us with a
problem: how do we manipulate computations in programs?
We need something to act as a “representation of a tree pro-
ducer.” Exactly how we represent these computations de-
pends on what aspects we want to model. Above, in the
context of traditional parsing technology, we arrived at func-
tions of a certain shape as our representations. Specifically,
our representation modeled the threading of a token stream
through the computation [16], as well as the possibility of
failure. We call this athreaded functional representationof
a tree producer. Let’s express this abstraction in the type con-
structorProducer :

Producer(α) = Tokens → (α + ErrMsg) × Tokens

Thus,Producer(Tree) is our representation for computa-
tions that produce trees.

The sum type can be represented in many ways in
Scheme. For injecting values into the left and right sides
of the sum, we use the operatorsinl andinr, respectively.
These operators are polymorphic over the number of injected
values, so(inl x y z) is acceptable usage. For dispatch-
ing on the two sum cases, we use thesum-case form.

〈example ofsum-case〉≡
(sum-case (inl 5 2)

((x y) (+ x y))

((a b) (- a b)))

The value of this expression is7. A portable implementation
of inl, inr, andsum-case appears in the appendix. Addi-
tional options for representing sums and a discussion of their
performance implications appears in Section 4.3.

It would be inconvenient to write parsers if we had to
explicitly manage values of theProducer types. Monads
provide just the right additional structure for manipulating
these values, so that programs have a consistent style, and
so that the details of theProducer types are abstracted
away [13, 14, 19].

To make this claim more concrete, let us construct a
little program in Scheme for parsing natural numbers (non-
negative integers). We begin with a version writtenwithout
the benefit of monadic operators. Even those readers who are
already quite familiar with monads may find it interesting
to follow the derivation of monadic structure as a kind of
“pattern-mining” via syntactic abstraction.
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2.1 Parsing Natural Numbers

A program that reads the digits in its input and parses num-
bers would be more typically described as scanning, not
parsing, but if we take individual characters as our tokens,
the distinction becomes largely moot. Here is a grammar for
natural numbers:

〈natural〉 → 〈digit〉 〈more digits〉
〈more digits〉 → 〈digit〉 〈more digits〉

| 〈empty〉

The entry point for our program is the procedurenatural,2

which is intended to instantiate an integer-producing com-
putation:
〈long version ofnatural〉≡

(define natural

(lambda ()

〈integer producer fornatural〉))

Using our representation scheme for computations, this
means thatnatural should return a value of type

Producer(Int) = Tokens → (Int + ErrMsg) × Tokens

Now let’s assume the existence of a nullary procedure
digit, which returns a character producer that gets a nu-
meric character from the token stream. It fails (i.e., returns
an error message) if the next available character is not a digit
or if no characters are available. Since a natural number be-
gins with at least one digit, we get:
〈integer producer fornatural〉≡

(lambda (ts1)

(sum-case ((digit) ts1)

((d ts2) (〈integer producer, given first digit〉 ts2))

((msg ts2) (inr msg ts2))))

The values returned bydigit are of the sum type, so we
must usesum-case to determine whetherdigit failed
or not. If so, thennatural itself must also fail, return-
ing the bottom value and the new tokensts2. (Failures
get to eat tokens, too.) The rest of the number comes from
more-digits—to be defined shortly—which instantiates a
list-producing computation, giving us a list of all the digits
(numeric characters) it can extract from the front of the to-
ken stream. The portion that reads the remaining digits, then,
looks much like what we already have:
〈integer producer, given first digit〉≡

(lambda (ts1)

(sum-case ((more-digits) ts1)

((ds ts2) (〈integer producer, given all digits〉 ts2))

((msg ts2) (inr msg ts2))))

Finally, we have to return the answer. For this, we need an
integer producer that represents a constant value (modulo
free variables), an especially simple sort of computation:

2 It may seem unnatural (no pun intended) to definenatural as a nullary
procedure instead of a value, but it will later take additional arguments and
possibly become a macro.

〈integer producer, given all digits〉≡
(lambda (ts)

(inl (string->number

(list->string (cons d ds)))

ts))

Naturally, the token stream is guaranteed to be unchanged in
a simple computation.

Having completed the definition that handles the first pro-
duction in the grammar, we move on to defining a procedure
that handles the〈more digits〉 non-terminal. More specifi-
cally, we definemore-digits to be a nullary procedure—
like natural—that gives us a producer. Whereasnatural

makes an integer-producing computation,more-digits in-
stantiates a computation that produces a list of characters.

The grammar for〈more digits〉 specifies two alternative
productions: one like〈natural〉 and one empty. Assuming
that we want to absorb as many contiguous digits as possible
into the number, we begin by trying the first alternative. If
it fails, we accept the empty production (with the original
token stream). Thus,more-digits begins this way:

〈long version ofmore-digits〉≡
(define more-digits

(lambda ()

(lambda (ts1)

(sum-case (〈list producer formore-digits〉 ts1)

((ds ts2) (inl ds ts2))

((msg ts2) (〈empty-list producer〉 ts1))))))

Let’s write the producer for the empty production first. It
represents a constant-valued computation, similar to the one
that returns the number innatural:

〈empty-list producer〉≡
(lambda (ts)

(inl ’() ts))

Most of the remaining code is identical to the body of
natural, as it should be, considering that the grammar pro-
duction is identical. The difference is in the return type:

〈list producer formore-digits〉≡
(lambda (ts1)

(sum-case ((digit) ts1)

((d ts2)

((lambda (ts1)

(sum-case ((more-digits) ts1)

((ds ts2)

(〈list producer, given all digits〉 ts2))

((msg ts2) (inr msg ts2))))

ts2))

((msg ts2) (inr msg ts2))))

Of course, one would usuallyβ-reduce the innerlambda
application, but we leave it in for consistency.

The code that returns the final value is like the corre-
sponding code innatural, except that it does not convert
the list of characters into a number:

〈list producer, given all digits〉≡
(lambda (ts)

(inl (cons d ds) ts))
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This completes the code for parsing natural numbers, as
written by following the types rather blindly.

2.2 Becoming More Abstract

There were two distinct patterns in the code fornatural and
more-digits. One represents simple computations, like re-
turning the empty list, the list of digits, or the integer value
of such a list. In each case, the code looked like this:
〈producer pattern for returning an answer〉≡

(lambda (ts)

(inl 〈answer〉 ts))

The other pattern was more complicated. It consisted of

1. invoking another producer,

2. receiving its return values (the result or error message and
the new token stream),

3. checking for failure, and

4. either

(a) sending the new token stream to a second producer, or

(b) propagating the failure, skipping the second producer.

Abstracting over such code in the preceding section, the
pattern looks like this:
〈producer pattern for sequencing two producers〉≡

(lambda (ts1)

(sum-case (〈producer #1〉 ts1)

((〈var〉 ts2) (〈producer #2〉 ts2))

((msg ts2) (inr msg ts2))))

These two patterns correspond to the two operations used in
monadic programming:return (also calledunit) andbind
(also calledmonadic let). As promised, we make coding
patterns concrete by defining them as macros. Procedural
definitions would be more conventional, but these macro
definitions change in Section 4 to perform code rewrites that
could not be accomplished with procedural abstractions.

Now return implements the simple answer-returning
pattern:
〈implementation of thereturn pattern〉≡

(define-syntax return

(syntax-rules ()

((return ?answer)

(lambda (ts)

(inl ?answer ts)))))

andbind implements the producer-sequencing pattern:
〈implementation of thebind pattern〉≡

(define-syntax bind

(syntax-rules ()

((bind (?var ?producer1)

?producer2)

(lambda (ts1)

(sum-case (?producer1 ts1)

((?var ts2) (?producer2 ts2))

((msg ts2) (inr msg ts2)))))))

The type constructorProducer , together withreturn and
bind, form aKleisli triple [11]. (Actually, the third element

of the Kleisli triple is notbind; it is extend, defined in
Section 3.1. We findextend to be more convenient for
mathematical manipulation andbind to be more convenient
for monadic programming.) A Kleisli triple is equivalent toa
monad; in fact, many authors drop the distinction altogether.
Also, not all definitions forProducer , return, andbind
form a Kleisli triple. The necessary properties are spelled
out in detail in Section 3.

Using the monad operations, we can rewritenatural to
bemuchmore concise and readable:

〈definition ofnatural〉≡
(define natural

(lambda ()

(bind (d (digit))

(bind (ds (more-digits))

(return (string->number

(list->string

(cons d ds))))))))

The syntactic abstraction technique we just used appears
repeatedly in the following sections: find a syntactic pattern,
abstract it with a macro definition, and rewrite the original
code more concisely using the macro definition.

One way to think about programming withreturn and
bind is that theProducer types form a family of abstract
data types, andreturn andbind are the public operations
that construct and combine producers. When we have a sim-
ple (non-producer) value and we want to instantiate a rep-
resentation of a computation that produces that value, we
usereturn. When we have representations for two com-
putations and we want to sequence them, we usebind to
construct a representation for the computation that feeds the
result of the first into the second.

2.3 Monadic Combinators

We can writemore-digits in a monadic style, but the
patterns abstracted byreturn andbind do not completely
absorb the code inmore-digits. The part that checks to see
if the first alternative failed, and if so proceeds to the second,
does not fit either pattern.

〈unsatisfactory definition ofmore-digits〉≡
(define more-digits

(lambda ()

(lambda (ts1)

(sum-case ((bind (d (digit))

(bind (ds (more-digits))

(return (cons d ds))))

ts1)

((ds ts2) (inl ds ts2))

((msg ts2) ((return ’()) ts1))))))

While the code that implements alternate productions in a
grammar does not fit the pattern of one of the core monad
operations, it is clearly a pattern that will appear any time
we need to check for the failure of one computation and
perform another instead. Abstracting over the pattern gives
usorelse, amonadic combinator:
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〈unsatisfactory definition oforelse〉≡
(define-syntax orelse

(syntax-rules ()

((orelse ?producer1 ?producer2)

(lambda (ts1)

(sum-case (?producer1 ts1)

((ds ts2) (inl ds ts2))

((msg ts2) (?producer2 ts1)))))))

If we rewritemore-digits one more time, usingorelse,
we get:

〈definition ofmore-digits〉≡
(define more-digits

(lambda ()

(orelse (bind (d (digit))

(bind (ds (more-digits))

(return (cons d ds))))

(return ’()))))

The definitions of bothnatural and more-digits now
correspond very directly to the grammar for natural num-
bers. Furthermore, neither procedure deals explicitly with
producer types except throughreturn andbind.

We have, until now, simply assumed the existence of
digit. Let’s write it now. A call todigit creates a char-
acter producer that examines the first character in the token
stream. If that character is numeric, it returns the character,
“removing” it from the token stream. Otherwise, the compu-
tation fails and leaves the token stream unchanged:

〈unsatisfactory definition ofdigit〉≡
(define digit

(lambda ()

(lambda (ts)

(if (or (null? ts)

(not (char-numeric? (car ts))))

(inr "not a digit" ts)

(inl (car ts) (cdr ts))))))

(We represent our token streams in this article as lists of
characters for simplicity.) Again, neitherreturn nor bind
helps simplify or clarify this code, becausedigit must
access the token stream, which is not visible in procedures
like natural that are written only in terms of the monadic
operations.

3. Monads as Abstract Data Types
When we first introduced theProducer type constructor, we
presented it as an abstract means of representing computa-
tions by values. When we defined thereturn andbind op-
erations, we provided a uniform interface to the abstraction.
Ideally, all the other definitions would inhabit a space outside
this abstraction boundary, even combinators likeorelse. In
the preceding section, though, we broke theProducer ab-
straction in two ways.

First, inorelse, we took the results of producer expres-
sions (constructed withreturn andbind, presumably) and
applied them to token streams. This violation of the abstrac-
tion boundary is similar to taking a stack (a classic ADT) and

performing a vector reference on it, just because we happen
to know that the stack is represented as a vector. While our
current representations for computations are, in fact, proce-
dures that expect token streams, it is wrong for arbitrary code
to assume such a representation. Instead, programmers need
some explicit means of reifying computations as values of
Producer types in order to pass their own token streams (or
whatever is appropriate to the specified representation types)
to them and examine the results.

Second, in bothorelse anddigit we cobbled together
arbitrary code—which happened to be of the proper type to
generateProducer values—and we expected to be allowed
to treat those values as valid representations of computa-
tions. This violation of the abstraction boundary is similar
to constructing our own vector to represent a stack and pass-
ing it to a procedure that expects a stack. This, too, is wrong.
We did it because we needed to have access to the current
token stream in the computation, but instead we need some
explicit means of constructing a representation of a compu-
tation and reflecting it into the system so that it is accepted
as something that has access to the threaded values.

The usual way to avoid violating the monad abstraction
boundary is to move the offending operations—likeorelse

anddigit—inside the boundary and treat them as funda-
mental monadic operators, having nearly the same status as
return andbind. The weakness of such a solution is that it
is often necessary to create operators likedigit while writ-
ing a parser, not while creating a parser monad. A better so-
lution is to create a small abstract data type for the monad
and its most basic operators and to provide an interface for
users of the monad to access the underlying representation of
the monad (or at least a constructed view of it) in a limited
way.

Monadic reflection, as introduced by Moggi [14] (though
he does not use the phrase “monadic reflection”) and am-
plified by Filinski [5], provides a means of crossing the
monadic abstraction boundary with mathematically founded
operators. Neither of these authors actually extends the idea
of monadic reflection into the space of exposing and hiding
representations in the sense of “reflective interpreters” and
the like. Such an extension is new in this work, but related
to the discussions by Chen and Hudak of monadic abstract
data types [2].

3.1 Foundations

A monad consists of four things [12]:

1. a type constructor,T , for lifting a typeα to a type that
represents computations that produce values of typeα,

2. a higher-order, polymorphic function (themapping func-
tion of the monad) for lifting functions so that they take
and returnT types,

(α → β)
map
−−−→ (T (α) → T (β))
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3. a polymorphic function (called theunit of the monad) for
lifting a value of typeα to the corresponding value of
typeT (α),

α
unitα−−−→ T (α)

and

4. a polymorphic function (called themultiplication of the
monad) for “un-lifting” a doubly-lifted value of type
T (T (α)) to the corresponding value of typeT (α).

T (T (α))
multα−−−−→ T (α)

(In category theory, the first two elements of the monad are
combined into a functor.) The possibility of iterating theT

type constructor creates a sequence of “levels.” The unit of
the monad shifts up a level (more nesting or wrapping), and
the multiplication shifts down (less nesting or wrapping).To
guarantee that all the level shifting is coherent, the mapping
function, unit, and multiplication must obey three equations:

multα ◦ map(unitα) = idT(α)

multα ◦ unitT(α) = idT(α)

multα ◦ map(multα) = multα ◦ multT(α)

A Kleisli triple for the monad consists of the type con-
structor, the unit (that is,return), and anextensionopera-
tion:

(α → T (β))
extendα,β

−−−−−−→ (T (α) → T (β))

Thebind form is simply a convenient notation for the com-
mon usage pattern ofextend :

((extend (lambda (v) N)) M) = (bind (v M) N)

While it is possible to define the mapping function and
multiplication of each monad directly, it is also possible
to define both in terms of thereturn andbind. Only the
indirect forms of the definitions follow.

For theProducer type constructor we are using in our
parsing examples, the mapping function—when applied to
some proceduref—returns a procedure that takes a producer
for one type and returns a producer for another. It usesf to
get a value of the second type.
〈indirect definition ofproducer-map〉≡

(define producer-map

(lambda (f)

(lambda (producer)

(bind (a producer)

(return (f a))))))

The multiplication of the monad takes a value that represents
a producer-producing computation. In other words, when
it is applied to a token stream, it either fails or returns a
producer and a new token stream. We can usebind for a
very concise definition, and writemult this way:
〈indirect definition ofmult〉≡

(define mult

(lambda (producer-producer)

(bind (producer producer-producer)

producer)))

The unit of the monad is actually the same thing asreturn:
〈indirect definition ofunit〉≡

(define unit

(lambda (a)

(return a)))

We see, then, that a monad can be defined completely in
terms of a Kleisli triple. The equivalence is bidirectional;
we shall not demonstrate it here, but the Kleisli triple can be
defined in terms of the monad, too.

3.2 Monadic Reflection

If Kleisli triples and monads are equivalent, why would we
choose one over the other? As was evident in Section 2.2,
Kleisli triples are excellent tools for monadic-style program-
ming. That is to say, they provide an appropriate means of
abstractly manipulating the values that we use to represent
computations.

The unit and multiplication of a monad, on the other hand,
succeed in just the place where Kleisli triples failed. They
provide the appropriate means for crossing the monadic ab-
straction boundary via level-shifting. In other words, the
unit andmult are excellent tools formonadic reflection.

In order to talk about “clean” reflective level crossings, it
is necessary to have some notion ofopaqueandtransparent
types. A simple mathematical understanding of the defini-
tion of Producer

Producer(α) = Tokens → (α + ErrMsg) × Tokens

treats the two sides of the equation as synonyms. From a
software engineering perspective, however, there is a signif-
icant difference between the type constructor being defined
and the body of its definition. To exploit this difference, let
us rewrite the types ofunit andmult, treating the outermost
level as opaque and the inner levels as transparent whenever
there are nested applications of the type constructor. They
become

P(α)
unitP(α)
−−−−−→ P(T (α))

and
P(T (α))

multα−−−−→ P(α)

whereP represents an opaque version ofT . Using these
types, the outer “interface” of the type always remains
opaque. The types forreturn andextend (and thusbind)
refer only to the opaque version of the type constructor:

α
returnα−−−−−→ P(α)

and
(α → P(β))

extendα,β

−−−−−−→ (P(α) → P(β))

It might seem that these operations allow no means of
“reaching through” the opaque type to do anything inter-
esting with the transparent version, but in fact, they provide
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plenty of power when the operations are used in conjunction
with each other.

Let us return to our unsatisfactory definitions ofdigit

and orelse to see how judicious use ofunit and mult

create clean and explicit abstraction-boundary crossings. We
begin withdigit, where we want to construct a representa-
tion for a non-standard computation (i.e., one that cannot be
constructed byreturn or bind). Furthermore, we want our
hand-constructed procedure to be accepted as a valid digit
(numeric character) producer. Here is the code that we want
to act as a digit producer; it is taken straight from the old
definition ofdigit:

〈custom digit producer〉≡
(lambda (ts)

(if (or (null? ts)

(not (char-numeric? (car ts))))

(inr "not a digit" ts)

(inl (car ts) (cdr ts))))

Just as we do for42 or (car ’(1 2 3)), we usereturn
to construct a computation that produces this value:

〈digit-producer producer〉≡
(return 〈custom digit producer〉)

Finally, we usemult to “shift down a level.” That is,mult
will turn the digit-producer producer into a plain digit pro-
ducer, explicitly coercing our hand-constructed value into a
valid instance of the abstract data type.

〈definition ofdigit, usingmult〉≡
(define digit

(lambda ()

(mult 〈digit-producer producer〉)))

Although orelse is longer and more complicated, the
same kind of techniques work for rewriting it in a more
satisfactory style. This time, we use bothunit andmult,
becauseorelse needs to shift up (lift the representation
of the underlying computation into a value the user can
manipulate) as well as down. We begin by lifting both of
the incoming producers:

〈definition oforelse, usingunit andmult〉≡
(define-syntax orelse

(syntax-rules ()

((orelse ?producer1 ?producer2)

(bind (p1 (unit ?producer1))

(bind (p2 (unit ?producer2))

〈producer that performs alternation〉)))))

As in digit, we need a producer that cannot be written
usingreturn andbind, so we construct one by hand and
usemult to reflect it into the system:

〈producer that performs alternation〉≡
(mult (return (lambda (ts1)

(sum-case (p1 ts1)

((ds ts2) (inl ds ts2))

((msg ts2) (p2 ts1))))))

The difference between this code and what appeared in the
body of the original version oforelse is that we have used

p1 andp2 in place of the producers to whichorelse was
applied. Explicitly applyingp1 andp2 to token streams is
a valid thing to do, becauseunit yields transparent values
wrapped in an opaque coating, andbind strips away the
coating.

3.3 Abstracter and Abstracter

Just asreturn andbind are syntactic abstractions of the
patterns for simple construction and sequencing of producer
values, we can formulate patterns that abstract the common
usage ofunit andmult. We assert that, if we were to go
out and write hundreds of procedures usingunit andmult,
we would see the same patterns over and over: the ones used
in digit andorelse. The pattern for usingunit looks like
this:
〈producer pattern for reifying a producer〉≡

(bind (〈var〉 (unit 〈producer #1〉))
〈producer #2〉)

And whenever we usemult, we applyreturn to alambda
expression:
〈producer pattern for reflecting a constructed producer〉≡

(mult (return (lambda (〈var〉)
〈expression〉)))

The effect of these compositions is even more evident when
the constituent operations are written as arrows. Assume
that〈producer #1〉 has opaque typeP(α) but 〈producer #2〉
treats〈var〉 as the transparentT (α), returning a value of
opaque typeP(β). In terms ofextend, this means that the
body is like a function

T (α)
g
−→ P(β)

and the whole reification composition is:

P(α)
unitP(α)
−−−−−→ P(T (α))

extendT(α),β(g)
−−−−−−−−−−→ P(β)

The reflection composition yields a simple conversion from
transparent to opaque types:

T (α)
returnT(α)
−−−−−−−→ P(T (α))

multα−−−−→ P(α)

As is our wont, we turn these patterns into macros. The first
we callreify:
〈definition ofreify〉≡

(define-syntax reify

(syntax-rules ()

((reify (?var ?producer1)

?producer2)

(bind (?var (unit ?producer1))

?producer2))))

The second we callreflect:
〈definition ofreflect〉≡

(define-syntax reflect

(syntax-rules ()

((reflect (?var) ?expression)

(mult

(return (lambda (?var) ?expression))))))
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Effectively, reflect exposes the threaded token stream to
the expression in its body.

We can now usereflect to simplify digit one more
time:

〈definition ofdigit〉≡
(define digit

(lambda ()

(reflect (ts)

(if (or (null? ts)

(not (char-numeric? (car ts))))

(inr "not a digit" ts)

(inl (car ts) (cdr ts))))))

Usingreflect andreify together, we get a new definition
of orelse:

〈definition oforelse〉≡
(define-syntax orelse

(syntax-rules ()

((orelse ?producer1 ?producer2)

(reify (p1 ?producer1)

(reify (p2 ?producer2)

(reflect (ts1)

(sum-case (p1 ts1)

((ds ts2) (inl ds ts2))

((msg ts2) (p2 ts1)))))))))

These are our final definitions ofdigit andorelse. They
are now completely explicit in their crossings of abstraction
boundaries. Also, the representation of computations is re-
markably abstract. We need know only that producers can
be applied to token streams and that they return a sum value
and a new token stream. We never uselambda to construct
producers directly.

3.4 A Grammar for Monadic Programming

When we decried the original code fordigit andorelse,
we were appealing to what we hoped was a shared implicit
intuition, which we now make explicit. What is it that makes
us uncomfortable with the following code?

〈bad code〉≡
(bind (x (natural))

(lambda (ts)

(inl (+ x 2) (cdr ts))))

What bothers us is that we expect the body of thebind

expression to be anotherbind or a return, or maybe a
reify or a reflect, but certainly not alambda. In other
words, programs written in a “monadic style” are really
written in a particular sublanguage in which only certain
forms are allowable.

We make the language of monadic programming explicit
by presenting a grammar for it. This grammar requires both
the right-hand side and the body ofbind expressions to be
other monadic expressions, and so on.

〈program〉 → D . . . (run M E)
D → (define VM R)
R → (lambda+ (V . . .) M )
M → (return E)

| (bind (V M ) M )
| (reflect (V ) E)
| (reify (V M ) M )
| (VM E . . .)
| derived monadic expression

E → arbitrary Scheme expression

By “derived monadic expression,” we mean user-defined
syntactic forms—likeorelse—that expand into monadic
expressions. By “arbitrary Scheme expression,” we mean
code that doesnot contain monadic subexpressions.

The relationships amongreturn, bind, reflect, and
reify might be better understood by examining typing rules
for them. The rules in Figure 1, for the sake of brevity, ab-
breviateProducer asP . No rules are given for arbitrary ex-
pressionsE. Instead, these four rules are meant to augment
the typing rules for standard expressions.

There are two additional forms introduced in this gram-
mar:run andlambda+. Without lambda+, there would be
no “roots” for the portion of the grammar that deals with
monadic expressions, nowhere to get started with monadic
programming. For now, we letlambda+ be synonymous
with lambda. To conform to this grammar,digit, natural,
andmore-digits should be modified to uselambda+.

Therun form simply starts a computation by passing the
initial token stream (or other store-like value) to a producer:

〈definition ofrun〉≡
(define-syntax run

(syntax-rules ()

((run ?producer ?exp)

(?producer ?exp))))

For example, this use ofrun:

(run (natural) (string->list "123abc"))

would run our natural-number parsing program and return
123 (left-injected) and the remaining characters(#\a #\b

#\c).

4. Optimizing Monadic Programs
With both the parsing operators likedigit and the simple
client code likenatural written in terms ofreturn, bind,
reflect, andreify, the inner abstraction boundary around
the monad is satisfyingly small. The performance, though,
is inadequate for use in a real compiler or interpreter. The
largest source of overhead expense is all the closure creation,
which a compiler may or may not eliminate. To provide a
stronger guarantee than “we hope the compiler cleans this
up for us,” it is possible to create new closure-free versions
of the macros for the core operators.
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(return)
Γ ⊢ E : τ

Γ ⊢ (returnE) : P (τ )

(bind)
Γ ⊢ M1 : P (τ1) Γ, v :τ1 ⊢ M2 : P (τ2)

Γ ⊢ (bind (v M1) M2) : P (τ2)

(reify)
Γ ⊢ M1 : P (τ1) Γ, v : (S → (τ1 + ErrMsg)× S) ⊢ M2 : P (τ2)

Γ ⊢ (reify (v M1) M2) : P (τ2)

(reflect)
Γ, v :S ⊢ E : (τ + ErrMsg) × S

Γ ⊢ (reflect (v) E) : P (τ )

Figure 1. Typing Rules

Let’s look at the expansion of a small part of our natural
number parser, the first of the alternatives inmore-digits:

〈more-digits fragment〉≡
(bind (ds (more-digits))

(return (cons d ds)))

Using the most recent versions ofbind and return, this
code expands into:

〈more-digits-fragment expansion〉≡
(lambda (ts1)

(sum-case ((more-digits) ts1)

((ds ts2) ((lambda (ts)

(inl (cons d ds) ts))

ts2))

((msg ts2) (inr msg ts2))))

In the expansion, every subexpression that denotes a pro-
ducer value, be it a call like(more-digits) or a lambda
expression, is applied to a token stream. This property will
hold in all such programs, as it is guaranteed by our gram-
mar.

4.1 Eliminating the Closures

According to the implementation from the preceding sec-
tions, every producer expression will construct a closure,
either directly (by expanding into alambda expression)
or indirectly (by invoking a procedure that returns a clo-
sure). These closures are then immediately applied to to-
ken streams. Of course, the direct expansion intolambda

and immediate application (as in the preceding example)
becomeslet in nearly every Scheme implementation, but
the sites where closures are returned by procedure calls are
much harder for a compiler to optimize. One way to im-
prove both the memory and space use of the code is to re-
move the need for the two-stage application. Since, in the
expansion, the token stream is always available to finish off
the application, we never need to partially apply procedures
like digit. Instead, we can modify the definitions of our

monadic-programming macros so the token stream is passed
as an extra argument to the existing procedures.

Thelambda+ form, which we introduced in the preceding
section, is the starting point for the extra arguments:

〈improved definition oflambda+〉≡
(define-syntax lambda+

(syntax-rules ()

((lambda+ (?formal ...) ?body)

(lambda (?formal ... ts)

〈body of token-accepting function〉))))

We now need to thread the token-stream argument appropri-
ately into the body. Since we know that this body must be
a monadic expression, we need only change the implemen-
tation of those forms consistently with the new “un-curried”
lambda+ form.

The simplest case is if the body is an application of a
user-defined procedure, such as a call todigit. In this case,
we need to make sure to thread our store through as the last
argument to the call. We accomplish this with the helper
form with-args:

〈definition ofwith-args〉≡
(define-syntax with-args

(syntax-rules ()

((with-args (?extra-arg ...)

(?operator ?arg ...))

(?operator ?arg ... ?extra-arg ...))))

It may seem thatwith-args is more general than necessary,
since it can handle multiple extra arguments, but this gener-
ality offers us a great deal of leverage, as we shall see later.
Usingwith-args, we can finish the definition oflambda+
like this:

〈body of token-accepting function〉≡
(with-args (ts) ?body)

This code is well-formed only if the body is in the form
of an operator and some arguments. If we look back at the
grammar, we see that this is indeed the case.



36

The definitions ofbind and return must now handle
extra input in their patterns. Inbind, these extra arguments
must be threaded into the subforms:
〈improved definition ofbind〉≡

(define-syntax bind

(syntax-rules ()

((bind (?var ?rhs) ?body ?ts ...)

(sum-case (with-args (?ts ...) ?rhs)

((?var ?ts ...)

(with-args (?ts ...) ?body))

((msg ?ts ...) (inr msg ?ts ...))))))

The token-stream parameter(s) used in the right-hand side
are the same ones (i.e., the same names as those) bound by
let-values in the body. We need not worry about shadow-
ing, though, since the token stream is necessarily threaded,
and there can be no free references to it in the body.

In return, the extra arguments need to be threaded back
out, along with the desired return value.
〈improved definition ofreturn〉≡

(define-syntax return

(syntax-rules ()

((return ?answer ?ts ...)

(inl ?answer ?ts ...))))

Thus,return becomes an alias forinl, as it should be.
Since we no longer run a computation by first evaluating

it and then passing the result a token stream, we must modify
run to follow the new protocol:
〈improved definition ofrun〉≡

(define-syntax run

(syntax-rules ()

((run ?producer ?exp ...)

(with-args (?exp ...) ?producer))))

The new version converts the initial stream(s) into argu-
ment(s) to the producer. The grammar in the preceding sec-
tion supported only a single “hidden” argument. In order for
it to support the generality that is included in the new ver-
sions of these operators, it should be modified to allow ad-
ditional arguments torun. The same sort of modification is
necessary in the grammar rule forreflect. It should allow
additional variables to be bound to the current values of the
additional store-like parameters.

Thereflect andreify forms require a bit more anal-
ysis before they can be optimized. We begin withreflect.
There are two ways to proceed here. One is to recognize
that while the added syntax we have imposed withreflect

is good for software engineering, thereflect form is still
mathematically equivalent to what we started with: a directly
constructedlambda expression for a producer. (This math-
ematical equivalence, which comes from the monad equa-
tions, is a good thing. It validates our sequence of abstrac-
tions and transformations.) The other approach is simply to
begin with the macro definition forreflect and follow all
the definitions andβ-reductions, eventually concluding that
reflect is merely an alias forlambda. Either way, the re-
sult is the same. Applying areflect form to a token stream

is the same as applying the correspondinglambda expres-
sion. In other words, under our new protocol,reflect ex-
pands into alet.
〈improved definition ofreflect〉≡

(define-syntax reflect

(syntax-rules ()

((reflect (?var ...) ?expression ?ts ...)

(let ((?var ?ts) ...)

?expression))))

We have carried the potential for threading multiple values
throughreflect, just as we did forwith-args. This gen-
eralizes the version ofreflect in the preceding sections.
Of course, thelet we just introduced merely renames the
token-stream parameter(s).

More mechanism is required to implementreify well.
If we continue to reify computations as values, using the
threaded functional representations, we must pay for first-
class procedures:
〈improved definition ofreify, first try〉≡

(define-syntax reify

(syntax-rules ()

((reify (?var ?rhs) ?body ?ts ...)

(let ((?var (lambda (?ts ...)

(with-args (?ts ...) ?rhs))))

(with-args (?ts ...) ?body)))))

While this works, it creates the first-class procedures we
were trying to avoid. The point ofreify is to allow the code
in the body to poke at the reified producer by passing it token
streams and examining the results explicitly. We can support
this functionality without forming a closure by constructing
the expansion-time equivalent of a locally-applicable clo-
sure: a local macro. We bind (at compile time) the variable
to a syntax transformer that generates the right code:
〈improved definition ofreify〉≡

(define-syntax reify

(syntax-rules ()

((reify (?var ?rhs) ?body ?ts ...)

(let-syntax

((?var (syntax-rules ()

((?var ?ts ...)

(with-args (?ts ...) ?rhs)))))

(with-args (?ts ...) ?body)))))

This new definition has a certain constraint that was not
present in the procedural version: the bound variable must
appear in the?body only in operator position. This is due,
in part, to the inability to do macro-like replacement of
plain identifiers in Scheme’s standardized syntactic exten-
sion mechanisms,3 but the restriction boosts efficiency any-
way. It prevents us from leaking unwanted computational ef-
fort into the runtime.

The new definition ofreify is backed by a mathemat-
ical equivalence, too. The original definition ofreify was
mathematically equivalent (again by the monad equations) to

3 Some implementations, such as Chez Scheme [3], do support substitution
for all identifiers in the scope of the macro binding.
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substituting the right-hand side for the variable in the body.
Our new definition does just this.

4.2 The Closure-Free Expansion

Using the new definitions forreturn, bind, etc., we get
wonderfully improved expansions for monadic programs.
For instance, the fragment of code at the beginning of this
section, which used to contain five different closure-creation
sites, now expands into the following:

〈more-digits-fragment expansion, improved〉≡
(sum-case (more-digits ts)

((ds ts) (inl (cons d ds) ts))

((msg ts) (inr msg ts)))

The new code creates no closures at all. The lack of rampant
anonymous procedures also makes the new code much more
amenable to compiler optimizations. For example, if all the
code for parsing is put in a single mutually recursive block
(i.e., a singleletrec), we would expect a good compiler to
turn all the calls into direct calls to known code addresses.

4.3 Alternative Sum-Type Representations

The representation we have used for sum-type values re-
quires a dispatch at every return site (see the appendix).
There are two useful alternatives to this approach.

One alternative is simply to return no value for failure,
and one value for success. This is no faster in the abstract
than returning a boolean value, since there remains a dis-
patch at every return site, but some implementations of
Scheme provide especially fast ways to dispatch on argu-
ment count [4]. Thus, while this technique does not decrease
the number of steps, it may decrease the absolute running
time of the program.

The second alternative is the only one that really elimi-
nates the return-site dispatch. One provable property of our
monad definition is that, in the absence of reification, failures
are propagated up through the entire extent of the computa-
tion. In other words, it is only in operators likeorelse that
failures may be caught and acted upon. We could capture a
continuation at each such dispatch point and pass it down
into the subcomputations. When we want to signal a failure
(as indigit), we invoke the most recently captured continu-
ation. This is close in both spirit and theory to the direct-style
monadic programming of Filinski [5]. In this implementa-
tion, no checks have to be made at each normal return point,
but the overhead for continuation creation may outweigh this
savings. (Actually, this technique does not require full con-
tinuations; it needs only escapes, which may be implemented
more cheaply than full first-class continuations.)

Näıvely implemented parsing routines, like the one we
wrote for natural numbers, will make heavy use oforelse.
Thus, depending on the expense of the second alternative, it
may not be worthwhile. On the other hand, if a grammar is
made very deterministic through the use of pre-calculation
(of “first” and “follow” sets, for example), then failures may

be truly exceptional, and the continuation-based alternative
could eliminate a significant amount of overhead.

5. Conclusions
The example in this paper has been exclusively about pars-
ing, but the results extend across a much broader scope: any
composition of store-like monads, possibly composed with
an error or lifting monad. The macros in the preceding sec-
tion are defined in such a way that it is easy to support the
threading of multiple store-like parameters through compu-
tations. In fact, the only form that must be changed to add
a parameter islambda+. For example, if we want to thread
three stores through the computation, we rewritelambda+

this way:

〈definition oflambda+ with 3 stores〉≡
(define-syntax lambda+

(syntax-rules ()

((lambda+ (?formal ...) ?body)

(lambda (?formal ... s1 s2 s3)

(with-args (s1 s2 s3) ?body)))))

The use ofwith-args in all the other forms will drive
them to expand in ways that propagate the store parameters
correctly. With our current definitions, any user-level code
that usesreflect must be rewritten to accept the extra store
parameters, and any code that usesreify must apply the
reified values to additional arguments. One way that this
work could be extended is to implement a mechanism by
which user-level code would be able to refer to only those
“hidden” parameters that they need to see at any point. This
is possible with more sophisticated macros.

At the end of Section 4.3 we alluded to the possibility
of preprocessing the grammar and/or parser to boost its
performance. Another possible direction we see for research
in this area is to combine the “fast LR parsing via partial
evaluation” techniques of Sperber and Thiemann [17] with
our expansion-time optimizations. The primary goal of most
functional parsing research is to make parsers easier for
people to write, but the same results should simplify the
work of parser generators.

Even if our goal had been to compile monadic programs
directly into a lower-level language, the more rigorous style
afforded by explicit monadic reflection would make the
compilation process more tractable. For example, a typi-
cal parser written in Haskell or Scheme will be much easier
to convert to C without arbitrary anonymous functions in the
user code, which the user expects to be treated as represen-
tations of computations.

The measurable performance benefit from the optimized
(store-threaded) macros varies depending on the Scheme
implementation. One production-grade parser that uses the
macros from this article is used to parse a kind of annotated
table-definition language for databases. The parser is split
into modules that do lexical analysis and phrasal analysis,
with the output of the first serving as the token stream for
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the second. One of the regular inputs to this parser contains
about 150 tables, at a total file length of about 3000 lines.
Running on Chez Scheme [3], the total time to parse the
input and construct the parse tree is less than 2 tenths of a
second on typical personal computer hardware. There is no
measurable difference between the different versions of the
macros, implying that Chez Scheme is already eliminating
all the overhead that might be introduced by closure creation,
even across procedure calls. Running on DrScheme [15,
6], the total parse time on the same hardware is about 1.5
seconds. There is a 10% to 12% decrease in the parse time
using the improved macros from Section 4.

Thus, the benefits of following a grammar for monadic
programming—even for operators that depend somewhat
on the monad’s representation—are two-fold: First, the pro-
grams written in a stricter monadic style are more elegant,
lessad hoc. While it is possible to write well-typed monadic
programs without using explicit reflection operators, they
violate abstractions in the same ways that ill-typed (but
runnable) programs do in C when they cast a file pointer
to be an integer and add 18 to it, just because some program-
mer happens to know that the result will be meaningful.
Second, the rigor that makes programsfeel better can also
make themrun better. While a sufficiently “smart” compiler
or partial evaluator might eliminate the closure overhead just
as well as our rewritten operators, there is an element of cer-
tainty that comes from shifting the work even earlier than
compile time. By making sure that the optimization happens
at expansion time, we depend less on the the analysis phase
of a compiler and more on our own mathematics.
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Appendix
As long as sum-type values never need to be stored in data
structures (and they do not, in this article), they can be
represented efficiently as “tagged” multiple values. The tag
is simply#t for left-injected values:

〈tag-basedinl〉≡
(define-syntax inl

(syntax-rules ()

((inl ?arg ...)

(values #t ?arg ...))))

and#f for right-injected values:

〈tag-basedinr〉≡
(define-syntax inr

(syntax-rules ()

((inr ?arg ...)

(values #f ?arg ...))))

For “casing” sum-type values, we use a new syntactic form
sum-case, as demonstrated in the following example:

〈sum type example〉≡
(define add1-or-zero

(lambda (thunk)

(sum-case (thunk)

((n) (+ n 1))

((z) 0))))

(list (add1-or-zero (lambda () (inl 42)))

(add1-or-zero (lambda () (inr 0))))

The last expression evaluates to the list(43 0).
Defining a macro forsum-case is relatively straightfor-

ward in a Scheme implementation that has a direct means
of generating temporary variables in macros. The portable
version of the macro is made much more complicated by the
need to generate a list of temporaries:

〈portable tag-basedsum-case〉≡
(define-syntax sum-case

(syntax-rules ()

((sum-case ?exp

((?left-var ...) ?left-result)

((?right-var ...) ?right-result))

(gen-var-list (?left-var ...)

(sum-case-help () ?exp

((?left-var ...) ?left-result)

((?right-var ...) ?right-result))))))

(define-syntax sum-case-help

(syntax-rules ()

((sum-case-help (?temp ...) ?exp

((?left-var ...) ?left-result)

((?right-var ...) ?right-result))

(call-with-values (lambda () ?exp)

(lambda (tag ?temp ...)

(if tag

(let ((?left-var ?temp) ...)

?left-result)

(let ((?right-var ?temp) ...)

?right-result)))))))

(define-syntax gen-var-list

(syntax-rules ()

((gen-var-list ()

(?head (?y ...) ?tail ...))

(?head (?y ...) ?tail ...))

((gen-var-list (?v0 ?v ...)

(?head (?y ...) ?tail ...))

(gen-var-list (?v ...)

(?head (?y ... temp) ?tail ...)))))
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