The Marriage of MrMathematica and M zScheme

Chongkai Zhu
mrmathematica@yahoo.com

Abstract

In this paper, | argue that the programming languages peavid
in current mainstream CASes are not suitable for general pur
pose programming. To address this problem, | developed NMh&da
matica. MrMathematica is a connection between Mathematich
PLT-Scheme, which provides the ability to call Mathemafican

2. CASprogrammersneed areal language

A key issue in the design of CAS is the resolution of what ismea
by “evaluation” — of expressions and programs in the embaédde
programming language of the system.

Roughly speaking, evaluation is a mapping from an objeet (in
put) and a specified context or environment to another oliedt

MzScheme. The two languages share some common ground, buis a simpler or more specific object (output). Example: 2+&lev

are mostly complementary to each other. MrMathematicareregs

ates to 5. More specifically and somewhat pedantically, ilA&.C

Mathematica, and it helps to introduce Scheme to more people evaluation involves the conventional programming languangp-

(CAS users).

1. Introduction

A Computer Algebra System(CAS) is a type of software package
that is used in manipulation of mathematical formulae. Tit@ary
goal of a CAS is to automate tedious and sometimes difficgé-al
braic manipulation tasks. The principal difference betwadCAS
and a traditional calculator is the ability to deal with etijoas sym-
bolically rather than numerically. The specific uses andabép
ties of these systems vary greatly from one system to anoteer
the purpose remains the same: manipulation of symbolictemsa
CASes often include facilities for graphing equations analige

a programming language for the user to define his/her owreproc
dures.

CASes began to appear in the early 1970s, and evolved out

of research into artificial intelligence (in Lisp), thoudhetfields

are now regarded as largely separate. The first popularmsgste
were Reduce, Derive, and Macsyma. The current market lsader
are Maple and Mathematica; both are commonly used by rdsearc
mathematicians, scientists, and engineers.

The programming languages provided in all the current main-
stream CASes are not suitable for general purpose prognagami
To address this problem, | developed MrMathematica, a Sehem
based system that keeps the repertoire of Mathematica.

The remainder of this article is organized as follows. Sec
of this paper discusses why CAS programming language fatls a
why a real language is needed; Section 3 introduces Matleamat
briefly; Section 4 gives details about MrMathematica; Secth
concludes.

Permission to make digital or hard copies of all or part of thiork for personal or

classroom use is granted without fee provided that copresi@r made or distributed
for profit or commercial advantage and that copies bear titissand the full citation

on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programmir8eptember 24, 2005,
Tallinn, Estonia.

Copyright(© 2005 Chongkai Zhu.

89

ping of variables or names (e.g. x) to their bound values 8,@nd
also the mapping of operators (e.g. +) to their actions. tessen-
tionally, CAS evaluation generally requires resolutiorsibfiations

in which a variable “has no value” but stands only for itselfjn
which a variable has a value that is “an expression”. For @@m
given a context where x is bound to 3, y has no binding or is used
as a “free variable”, and z is a+2, a typical CAS would evauat
X+y+z+1to y+a+5.

In simple cases this model is intuitive for the user and effitly
implemented by a computer. But a system design must alsdénand
cases that are not so simple or intuitive. CAS problem-gglvi
sessions abound in cases where the name and its value(shé so
context(s) must coexist. Sometimes, values are not thereldyant
attributes of a name: there may be a declaration of “type”tbeio
auxiliary information. For example it might evaluatie® z < 1 to
“True” knowing only that x is of type “Real”.

CAS builders, either by tradition or specific intent, often-i
pose two criteria on their systems intended for use by a "gd¢he
audience. Unfortunately, the two criteria tend to conflict.

1. The notation and semantics of the CAS should correspond
closely to “common intuitive usage” in mathematics.

2. The notation and semantics of the CAS should be suitable fo
algorithmic programming as well as (several levels) of dpsion
of mathematical objects, ranging from the abstract to traively
concrete data representations of a computer system.

The need for this first requirement (intuitiveness) is rpiat
gued. If programs are going to be helpful to human users inth-ma
ematical context, they must use an appropriate common &yegu
Unfortunately, a careful examination of common usage shbes
semantics and notion of mathematics as commonly writteri-is o
ten ambiguous or context dependent. The lack of precisicndh
mathematics (or alternatively, the dependence of the sersaof
mathematical notation on context) is far more prevalent thiae
might believe. While mathematics allegedly relies on rigiod for-
mality, a formal “automaton” reading the mathematicalrtitere
would need to accumulate substantial context or else suiféatly
from the substantial abuse of notation that is, for the mast, p
totally accepted and even unnoticed by human readers. @ansi
cos(n + 1)z sinnz.

Because the process of evaluation must make explicit thé bin
ing between notation and semantics, the design of the diaua
program must consider these issues centrally. Furtherravatu-
ation typically is intertwined with “simplification” of radts. Here

again, there is no entirely satisfactory resolution in thmisolic So | wrote MrMathematica, which lifts and embeds a popular

computation programs or literature as to what the “simplesm CAS, Mathematica, into Scheme. Although the currently ioers
of an expression means. targets only MzScheme, its design is portable to any Lispémp

As for the second requirement, the need for programming and mentation that can be extended using C. Mathematica wagihos
data description facilities follows from the simple facattcom- because it has the most dynamic language among major CASes;
puter algebra systems are usually “open-ended”. It is negipée to PLT Scheme was chosen because it has a good interface age a lar
build-in a command to anticipate each and every user remeing user group.

Therefore, except for a few simple (or very specific, appiirea
oriented) systems, each CAS provides a language for thetoser 3. |ntroduction to M athematica
program algorithms and to convey more detailed specificataf
operations of commands. This language must provide a bfage
a computer algebra system user to deal with the notationsend
mantics of programming as well as mathematics. Often thensie
including constructions which look like mathematics butédndif-
ferent meanings. For example, in Mathematica x = x+1 is @nogr
ming language assignment statement; x == x + 1 is an appgrent
absurd assertion of equality. Furthermore, the programran-
guage must make distinctions between forms of expressibes w
mathematicians normally do not make such istinctions. Asxan
ample, the language must deal with the apparently equal dtut n
identical expressions 2x and x + X.

Programming languages also may have notations of “storage
locations” that do not correspond simply to mathematicédtions.
Changing the meaning (or value) of an expression by a siéeteff
is possible in most systems, and this is rather difficult tplax
without recourse to notions like “indirection” and how daga
stored. For example, in Mathematica, m[[1,1]]= b assigrse/to
a position in the matrix m.

With respect to its evaluation strategy, each existing CA
chooses its own twisting pathway, taking large and smallesom
times controversial stands on different issues, along the het's
see an example in Mathematica:

In a typical CAS, an internal evaluation prograav4l for short),
plays a key role in controlling the behavior of the systemeiftv
thougheval may not be explicitly available for the user to call, it
is implicitly involved in much that goes on. Typicalkyal takes as
input the representation of the user commands, prograrotivies,
| and other “instructions” and combines them with the “statithe
system to provide a result, plus sometimes a change in thte"st
Mathematica is one CAS that has a singial.

The central data types of Mathematica are just the same as
Scheme: numbers, symbols, and lists. The abstract synttheof
two languages is also congruent: every expression is &dised
tree. To accommodate traditional mathematical expressjon
tax, Mathematica defines several formsputForm, OutputForm,
TranditionalForm, FullForm, and so on. The FullForm is very
close to S-exp, and is the internal representation of esfmesA
FrontEnd is used to convert between ordinary mathematkpaks-
sion (InputForm, OutputForm, TranditionalForm) and Falif.

Mathematica has two major difference compared with Lisp.
S First, Mathematica doesn’t have quote. Second, Mathemates

array (of pointers) instead of Lisp’s linked-list.

The underlying strategy for evaluation in Mathematica isdsh
on the notion that when the user types in an expression, gieray
should keep applying rules (and function evaluation meaes r

i=0; application in Mathematica) until the expression stopsngiray.
glx_] := x+i/;i++ > x (The example in the previous section just violate this st
To get a detailed introduction of Mathematica languagagee
Or put in Scheme syntax: refer to part 2 of [2], or [6].
There are additional evaluation rules for numerical corafo
(begin (Set i 0) in which Accuracy and Precision are carried along with eagh-n
(SetDelayed (g (Pattern x (Blank))) ber. These are intended to automatically keep track of nigader
(Condition (+ x 1) errors in computation.
(> (Increment i) x)))) Besides the rule-based language, Mathematica also offamg m
mathematical functions and methods, including algebrainipu-

The two allegedly equivalent expressions (list (g 0) (g ®J a lation, symbolic calculus, plotting, and so on. Part 3 off@cribes
(Table (g 0) (list 2)) result in (list (g 0) 2) and (list (g 0) @) them in detail.
respectively.

{hor's own experience, when witing big programs in Mathéese. ¢ Oructureand I nterpretation of
wn experi , when writi ig i .
(or some other major CAS), such problems can and will arise, r MrMathematica

sulting in substantial debugging difficulty. Scheme is a meta-language and MzScheme is actually an opera-
Providing a context for “all mathematics” without makingath tion system [3], while Mathematica regards itself only asca s

unambiguous underpinning explicit is a recipe that ultehakeads entific computation tool. This determines the architectfrr-

to dissatisfaction for sophisticated users. Mathematica: It works as an extension to MzScheme, whids cal

Is there a way through the morass? A proposal (eloquently Mathematica.
championed some time ago by David R. Barton at MIT and more ~ Among all possible interface (between Scheme and Mathemat-

recently at Berkeley) [4] goes something like this: WriteLisp ica). | choose to implement the simpest one, MathEval, wisch
or similar suitable language and be done with it. This sothes exactly theeval used by Mathematica. MathEval is provided as
second criterion. As for the first criterion of naturalnesiet-the a Scheme function, with input and output done in S-exp, ngakin
mathematician/user learn the language, and make it eiplici use of the similarity between S-exp and FullForm. MathEw# s

But there is nearly no CA library in Scheme, besides the fices. Even if you want some “better” interface, the right way
lightweight JACAL. Statistics shows that for those peoplbow implement it is first to define the same MathEval, and then to de
want to do symbolic computation with a computer, nearly e#l a fine your interface based on it. Another merit of MathEvalhatt
using a CAS, and nearly none is using Lisp, although mostesfith it needs explicit quote, which helps distinguighing betwakyebra
also want general purpose programming at the same time.’8Vhat expression and other Scheme value.
worse, CASes that are in/with Lisp (such as MACSYMA, Axiom) Mathematica and MzScheme are both implemented in C, so it
have only negligible market share. is natural for MrMathematica to use C as transmitter. Butrttze

90

A k45 — DrScheme

RS ()

- OX

R (H)

IfHE EEE WEG EFL) Schens
Fer &~ —
{define ..}~ | 2 S 04T

|@DebugH@Analyze“@*ﬁﬁ%ﬁ& ”_,A(’Jéﬁ]|©1h$_IJ:]

M 4E A DrScheme, KA 299,

W E Textual (MzScheme + 818 R5RS)

> {require

> {(MathEwval "{Integrate {/ 1 (-
T 1

(5 (log {(+ -1 x))) (* 735

> {(MathEval '"{(Factorial 100})}

(+ {log

pooooooooooooOoooD

» {define (prime? n)
[MathEval ~{Primeg ,n));

> (prime? 1299700)

#t

> {prime? 123456789)

#f

= (MathEval T {ContourPlot

{Rule ContourLines #f£)))

{sin

)

(lib "mathematica.ss" "mrmathematica"))
[expt x 2)

i+ 1=

03326215443944152681690230885626607004007150682643816214A8502063895217500 2
D93225991560854146397615651828625369792082722375825118521091686400000000 2

(3)

) =)

{listix =5 5] [list g5 :5) 2

[ElEkE| 66715648 /5

Figure1l. MrMathematica session

jor part of MrMathematica was written not in C but in Scheme.
Bottom-up style was used: All needed MathLink (Mathematica
C interface) functions were raised into Scheme in a loweeray
implemented as a Scheme module. All the other parts of MrMath
ematica are written in Scheme, and the final export is ther8ehe
function MathEval. Compared with the interface providedath-
Link, nearly all the details about the call are encapsulated
Although the structures of S-exp and Mathematica-expoassi
are similar, the actual keywords are different. The syntasome
pre-defined functions is also distinct. To bridge the gapsé a
separate module in MrMathematica to translate expressitms
result is that a user can write expression just as a Schemanshe
send it to Mathematica. In most cases, the output of Mathieaat
can be directly feed into the Scheme functearal or used directly
as a Scheme object. The default rules in the translate table a
conservative, only dealing with the (exact) common partakfe$ne

tent Scheme. The recommended way to use MrMathematica is, to
do all the other programming job in Scheme, and when dealing
with mathematical concepts, call the corresponding Mattea
function using MathEval.

You can define your Scheme function that use MathEval, thus
using the power of Mathematica with almost no effort. For ex-
ample, the Mathematica function Factorinteger was raisgd i
Scheme, with exactly the same contract:

> (define (factorinteger n)
(eval (MathEval ‘(FactorInteger ,n))))
> (factorinteger 111111111111111111)
(32) (71) (11 1) (13 1) (19 1) (37 1)
(52579 1) (333667 1))

A more efficient version:

and Mathematica. Programmers can customize the table by new

rules.

From the example in Figure 1, we can see that MrMathemat-

ica allows every Mathematica Input-Output done in “Fullfrdof
Mathematica. So CAS users will lose no function from Mathema
ica, but get the unambiguous, aesthetically appealingcandis-

91

> (define-syntax factorinteger
(syntax-rules ()
((_ n)
(map cdr
(cdr (MathEval ‘(FactorInteger ,n)))))))

For computaion that involves algebra symol(s), explicibgLis
used. See the example about integration. To use the retlura iva
Scheme, a explicit call to Scheme’s eval is needed:

> (define f
(MathEval

’(Integrate (/ 1 (+ (expt x 2) 1)) x)))
> f
(atan x)
> (define s (eval ‘(lambda (x)
> (s 0)
0

,£)))

MrMathematica is designed to avoid providing too many fea-
tures, but also to avoid weaknesses or restrictions. Fangbe
calling multiple or remote Mathematica Kernel(s) is supedr par-
allel computation is available using PLT’s thread utilitgriables
could all be put in Scheme and the quasi-quote will help feans
their values into Mathematica; Windows, Unix (includingiuk),
and MacOS are all supported; MrMathematica can render Graph
ics from Mathematica in DrScheme (this feature needs Sclagihe
Mathematica running on same machine, which needs further im
provement).

Even if your favorite Scheme implementation is not PLT, port
ing MrMathematica should be easy. There are only three point
that are not R5RS and SRFI: the Scheme to C interface, the mod-
ule system, and the Graphics renderer. MrMathematica lisgisié
MzScheme”, the only official C interface for PLT Scheme v28x,
its FFI. As mentioned before, all code that deals with C is $ep-
arate module whose only role is raising C functions. Chamdin
into different FFI could be done as a routine. The same to eodu
system. To render Graphics from Mathematica in DrSchemEdMr
is used. When using other Scheme implementation, you caly eas
disable this feature, just as the light-weight version oMdthe-
matica (designed for MzScheme only instead of full DrScheme
does.

5. Conclusion and Future Work

With MrMathematica, you can use whatever feature you likeegi
from Scheme or from Mathematica. The recommended method to
use MrMathematica is to do mathematical compuation in Mathe
matica and other programming in Scheme. This solves thdqrob

of major CASes: the lack of a good programming language.

Schemers can view MrMathematica as a Computer Algebra
library, or a build in term rewriting engine; Mathematicaets
can view it as a Foreign Language Interface better than that o
Java, Perl or Python (string based). After all, the two |augs
are homologous, thus making the symbiosis.

However, this is only a start of the project. To be really suc-
cessful, MrMathematica need more applications. Henceptper.
Enjoy hacking with MrMathematica!

For more information about MrMathematica, please Visitp:
//wuw.websamba.com/mrmathematica.

Acknowledgments

Thanks to LinPeng Huang, Matthew Flatt, and Shriram Krishna
murthi for prereading the draft of this paper.

References
[1] PLT Schemehttp://www.plt-scheme.org/.

[2] Stephen Wolfram. The Mathematica Book. Wolfram Medi&h 5
Edition, 2003.

92

[3] Matthew Flatt, Robert Bruce Findler, Shriram Krishnathy and
Matthias Felleisen. Programming Languages as Operatiste®g.
ICFP 1999.

[4] Richard J. Fateman. Symbolic Mathematics System Etaigal SSAC
1996.

[5] Geddes K.O., Czapor Stephen R., and Labahn George. ikigws for
Computer Algebra.Kluwer Academic, 1992.

[6] John Gray. Mastering Mathematica. Academic Press]1884.

[7] G J Chaitin. Algorithmic Information Theory. Cambriddgniversity
Press, 2004.

[8] Stephen Wolfram. A New Kind of Science. Wolfram Media020

[9] Olin Shivers. A Scheme Shelhttp://www.scsh.net/docu/
scsh-paper/scsh-paper.html

[10] Aubrey Jaffer. Jacahttp://swissnet.ai.mit.edu/jaffer/
JACAL .html

[11] Maxima.http://maxima.sourceforge.net/

[12] Axiom. http://savannah.nongnu.org/projects/axiom
[13] Reducehttp://www.reduce-algebra.com/

[14] Mapple.http://www.maplesoft.com/

