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ABSTRACT
This paper presents Jsigloo, a Bigloo frontend compiling Javascript
to Scheme. Javascript and Scheme share many features: both are
dynamically typed, they feature closures and allow for functions
as first class citizens. Despite their similarities it is notalways
easy to map Javascript constructs to efficient Scheme code, and in
this paper we discuss the non-obvious transformations thatneeded
special attention.

Even though optimizations were supposed to be done by Bigloo
the chosen Javascript-Scheme mapping made several analyses inef-
fective and some optimizations are hence implemented in Jsigloo.
We illustrate the opportunities Bigloo missed and show how the
additional optimizations improve the situation.

1. Introduction
Javascript is one of the most popular scripting languages available
today. It was introduced with Netscape Navigator 2.0 in 1995, and
has since been implemented in every other dominant web-browser.
As of today nearly every computer is able to execute Ecmascript
(Javascript’s official name since its standardization [9] in 1997),
and most sophisticated web-sites use Javascript.

Over the time Javascript has been included in and adapted to
many different projects (eg. Qt Script for Applications, Macro-
media’s Actionscript), and it is not exclusively used for web-
pages anymore. Most of them are interpreting Javascript, but some
are already compiling Javascript directly to JVM byte code (eg.
Mozilla’s Rhino [5] and Caucho Resin [4]).

Javascript is not easy to compile though. Several of its proper-
ties make it challenging to generate efficient code:

• Javascript is dynamically typed,

• functions are first class citizens,

• variables can be captured by functions (closures),

• it provides automatic memory management, and

• it contains aneval function, which allows one to compile and
run code at run-time.
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Scheme has similar features, and Scheme compilers are faced
with the same problems. Contrary to Javascript much research
has been spent in compiling Scheme, and there exists severalef-
ficient Scheme compilers now. By compiling Javascript to Scheme
it should hence be possible to benefit from the already present op-
timizations. Bigloo, one of these efficient compilers, has the sup-
plementary advantage of compiling to different targets: inaddition
to C, it is capable of producing JVM bytecode or .NET’s CLI. A
Javascript to Scheme compiler would hence immediately makeit
possible to run (and interface) Javascript with these threeplatforms.

When we started the compiler we expected to have the following
advantages over other Javascript compilers:

• The compiler should be small. Most of Javascript’s features
exist already in Scheme, and only few adjustments are needed.

• The compiler should be easy to maintain. A small compiler is
easier to maintain than a big, complex compiler.

• The compiler should be fast. Bigloo is fast, and if the trans-
lated code can be optimized by Bigloo, the combined compiler
should produce fast code. An efficient Javascript to Scheme
compiler does not need to create efficient Scheme-code, but
code that is easily optimized by Bigloo.

• Any improvement in Bigloo automatically improves the Java-
script compiler. New optimizations are automatically applied to
the Javascript code, and new backends allow distribution todif-
ferent platforms.

• Javascript code could be easily interfaced with Scheme and all
languages with which Bigloo interfaces.

Many existing Javascript compilers or interpreters already featured
some of the listed points, but none combined all these advantages.

Our compiler,Jsigloo, takes Javascript code as input, and trans-
lates it to Scheme code with Bigloo extensions1 which is then op-
timized and compiled to one of the three platforms. Furthermore
it is planned to integrate Jsigloo into Bigloo (as has been done for
Camloo [16]) thereby eliminating the intermediate Scheme-file.

Section 2 will detail the differences between Javascript and
Scheme. In Section 3, the chosen data-structure mapping andtyp-
ing issues are discussed. Section 4 describes the code generation
and how encountered difficulties are handled. Some preliminary
performance results are given in Section 5. Section 6 shows why
Jsigloo is not yet finished and what needs to be improved in the
future. Finally, Section 7 concludes this paper.

1 Most of the used extensions increase Bigloo’s efficiency andcould be
either omitted or replaced by equivalent (slower) Scheme expressions.
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2. Javascript vs. Scheme
Javascript and Scheme share many features, and this sectionwill
therefore concentrate on their differences rather than similarities.
Even though Javascript is generally considered to be an object ori-
ented language, it bears more resemblance to functional languages
like Scheme than to most object oriented languages. In fact Java-
script’s object system is based on closures which is a feature typi-
cally seen in functional languages.

Javascript’s syntax resembles Java (or C), and even readers
without any Javascript knowledge should be able to follow the
provided code samples.

2.1 Binding of Variables

In Scheme, new variables can only be created within certain ex-
pressions (eg.let anddefine) which ensure that every variable is
defined. Javascript however is more flexible:

• Globals do not need to be declared. They can be defined within
the global scope (using the same syntax as is used for local
variables in functions), but it is also possible to declare them
implicitly when assigning an undeclared variable2. The inverse
- reading from an undeclared variable - is not possible and
throws an exception.

• A variable declaration (var x;) allows one to declare variables
anywhere in a function. The variable is then set toundefinedat
the beginning of the function. Most languages provide blocks
to limit the visibility of variables whereas in Javascript blocks
do not influence the scoping. But even more surprising the
declaration also affects all previous occurrences of the same
symbol. In theory one could put all variable-declarations in a
block at the end of a function.

This flexibility comes at a price though. When variables share
the same name it is easy to accidently reference the wrong variables
and produce buggy code. The following example contains several
common mistakes.

1: var x = "global"; // global variable
2: function f() {
3: x = "local"; // references local x
4: var someBool = true;
5: var x = 2;
6: some bool = false; // oops.
7: if (someBool) {
8: var x = 1; // references same x
9: }
10: return x;
11: }
12: f(); // => 1
13: x; // => "global"
14: some bool; // => false

Due to the local declaration ofx in line 5 and 8 the assignment
in line 3 does not change the globalx, but the local one. Line
6 contains another annoying bug: instead of changing the local
someBool a new globalsome bool is created and set tofalse.

From a compiler’s point of view these differences are mostly
negligible though. Only the automatic assignment ofundefinedis
of concern, as it makes typing less efficient.

2.2 Object System

Whereas Bigloo uses a CLOS-like [6] object system, Javascript
adopted a prototype based system [13]: conceptually objects are
ordinary hash tables with an attached prototype field. When-
ever a property (Javascript’s synonym for ”member”) is read
(obj.property or obj["property"]) the object’s hash table

2 Note, there exists a third method involving the ”global object”.

is searched for this entry. If the hash table contains the property the
value is returned otherwise the search recursively continues on the
object stored in the prototype-field. Either the member is eventu-
ally found, or the prototype does not hold an object, in whichcase
undefinedis returned. Writing on the other hand is always done
on the first object (ie. the prototype is completely ignored). If the
property did not already exist it will be created during the write.

Methods are just regular functions stored within the object.
Every procedure implicitly receives athis argument, and when
called as method (obj.method() or obj["method"]()) this
points to the object (as in line7 of the next example). If a function
is called as non-method (line4) the this-argument is set to the
global objectwhich represents the top-level scope (containing all
global variables and functions).

1: function f() {
2: print(this);
3: }
4: f(); // ’this’ in f becomes the global object
5: var o = new Object();
6: o.f = f;
7: o.f(); // ’this’ in f becomes o

In Javascript all functions are objects, and while functionin-
vocations usually do not access the contained properties, the
prototype-property is retrieved, when functions are used as con-
structors. Indeed, constructors too are just functions anddo not
need to be declared differently. An object creation is invoked by
the constructnew Fun(), which is decomposed and executed in
three steps:

• Javascript creates a new object.

• it retrieves theprototype-property out of the function object’s
hash table (which is not necessarily identical to the prototype-
field of the same object), and stores the result in the prototype-
field of the newly created object.

• it runsFun as if it was invoked as a method on the new object,
hence allowing to modify it.

Even though the previous description is not entirely complete
(we intentionally omitted some special cases), it is not difficult to
show that prototype-based object-systems allow most (if not all)
usual Smalltalk [11] or CLOS operations. In particular inheritance,
private members or mix-ins [10] are easily feasible. Interested read-
ers are referred to [7] for a more in-depth discussion of Javascript’s
object-system.

2.3 Global Object

Simply spoken, theglobal object represents the scope holding
all global variables (including the functions). What differentiates
Javascript from many other languages is the fact, that this ob-
ject is accessible to the programmer. It is hence possible tomod-
ify global variables through an object. Interpreters simply reuse
their Javascript-object structure for all global variables. Whenever
needed they just provide a pointer to this structure. However for
an optimizing compiler the global object is a major obstacle. The
following example demonstrates how the global object disallows
simple optimizations like inlining.

1: function g() { /* do something */ }
2:
3: function f(o) {
4: o.g = undefined;
5: g();
6: }

Suppose the given functions are part of a bigger program. Func-
tion f is calling the global functiong. If g is never changed (eg.g
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= some value;), which is usually easy to detect, a good compiler
could inlineg. In Javascript it is however more or less impossible to
be sure thatg is never modified. Even the object passed tof could
be the global object, andf could changeg. As pointer-analyses are
generally very costly and compute only conservative approxima-
tions, tracking the global object is not an option.

It is not even possible to avoid the use of global objects (as
should be done with thewith-construct). The global object is ac-
cessed by two ways: it is assigned to thethis variable in the global
scope (easily avoidable), but it is also passed to every function call,
where it becomes thethis-variable. Exceptions are all method-
calls where the global object is replaced by the object on which the
method is executed (Section 2.2 shows an example).

2.4 Variable Arity Functions

Scheme and Javascript both allow variable arity functions,but their
approach is quite different. Scheme procedures must explicitly al-
low supplementary parameters, whereas Javascript functions are
automatically prepared to receiveanynumber of arguments. Even if
a function’s signature hints several parameters, it can still be called
without passing any argument. The missing values are automati-
cally filled with undefined:

1: function f(x) { print(x); }
2: f(); // => prints "undefined"

If the procedure needs to know the actual number of passed
arguments, it can access thearguments-object which is available
within any function. Not only does the propertysize hold the
actual number of parameters, it also contains a reference toall
arguments:arguments[n] accesses thenth argument. Variables
in the function’s signature are just aliases to these entries. The
following example demonstrates the use ofarguments. It will print
2, 3 and finally2:

1: function f(x) {
2: print(arguments.size); // => 2
3: x = 3; // modify first argument
4: print(arguments[0]); // => 3
5: print(arguments[1]); // => 2
6: }
7: f(1, 2);

2.5 Eval Function

Scheme and Javascript both have theeval function, which al-
lows to compile and execute code at runtime. They do not use the
same environment for the evaluation, though. Scheme gives the de-
veloper the choice between theNull-environment, Scheme-report-
environmentor theInteraction-environment. TheNull-environment
andScheme-report-environmentare completely independent of the
running program and an expression evaluated in them will always
yield the same result. The optionalInteraction-environmenthow-
ever allows to interact with the running program. The visibility of
this environment is usually restricted to the top-level of the running
program, and it is certainly independent from the location where
eval is executed.3.

Javascript, on the other hand, uses the same environment in
which theeval function is executed. The evaluated code has hence
access to the same variables any other statement at theeval’s loca-
tion would have. To ease the development of Javascript compilers,
the standard gives writers the choice to restrict the use ofeval to
the formeval(...) (disallowing for instanceo.eval(...)) and
to forbid the assignment ofeval (makingf=eval illegal)). It is

3 The standard is rather unclear about what this environment really repre-
sents.

then possible to statically determine all locations and environments
of eval.

3. Data structures and Types
The Javascript specification defines six types:Undefined, Null,
booleans, strings, numbers and Object. This section presents the
chosen representation of these types in the compiled code. Java-
script’s strings and booleans are directly mapped to their Scheme
counterparts. As reimplementation of Javascript’s numbers would
have been too slow and too time-consuming, numbers are mapped
to Scheme doubles. This representation does not conform to the
ECMA specification4, but the differences are often negligible.Un-
definedandNull are both constants and currently represented by
Scheme symbols. Asnull is generally used for undefined objects
we might replace it by a constant object in future versions ofJsigloo
to improve typing.

Javascript objects however could not be mapped to any primitive
Scheme (or Bigloo) type. In Javascript properties can be added and
removed to objects at run-time, and Bigloo’s class-system does not
allow such modifications. As a result a Bigloo classJs-Object has
been written that represents Javascript objects. It contains a hash
table as container for these dynamic properties and a prototype-
field which is needed for Javascript’s inheritance. Severalassoci-
ated procedures simulate Javascript’s property accesses and Java-
script’s objects are now directly mapped to theJs-Object and its
methods.

Javascript functions are objects with an additional field con-
taining the Scheme procedure. In our caseJs-Function is a
Bigloo class deriving fromJs-Object, where a new fieldfun
holds the procedure. A function call gets hence translated into a
member-retrieval (with-access) followed by the invocation of
the received procedure. Figure 1 shows the two classes and the
js-call-function executing the call. (a description ofthis-var
andarguments-vec is found in Section 4.4).

1: (class Js-Object
2: props ; hashtable
3: proto) ; prototype
4:
5: (class Js-Function::Js-Object
6: fun::procedure) ; field of type procedure
7:
8: (define-inline (js-call fun-obj this-var arguments-vec)
9: (with-access::Js-Function fun-obj (fun)
10: (fun this-var arguments-vec)))

Figure 1. Javascript’s objects and functions are mapped to Bigloo classes

Javascript is dynamically typed and variables can hold values of
different types during their lifetime. Most of the time programmers
do not mix types though, and it is usually possible to determine a
small set of possible types for each variable. Bigloo already per-
forms an efficient typing analysis [15], but it cannot differentiate
Javascript types that have been mapped to the same Scheme type
(undefinedandnull become both symbols, objects and functions are
both translated to Bigloo objects). Bigloo lacks Javascript-specific
knowledge too. Depending on the operands some Javascript oper-
ations may return different types. One of these operations is the
+-operator. If any operand is a string the result will be a string, oth-
erwise the expression evaluates to a number.

As a result Jsigloo contains itself a typing pass. Contrary to
Bigloo Jsigloo only implements an intraprocedural analysis resem-
bling the implementations found in “Compiler Design Implemen-

4 Javascript requires -0 and +0 to be different, which is not possible with
any Scheme number type in R5RS.
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tation” [14], Chapter “Data-Flow Analysis”. This choice implies
that parameters need to be typed totop (i.e. an abstract value de-
noting any possible type) as is the case for escaping variables: at
every function-call the types could change and they need to be set
to top. Despite these two restrictions the typing pass is able to type
most expressions to some small subset. As we will see Javascript
does many automatic conversions, and restricting the type-set only
a little helps a lot to reduce the impact of them.

4. Compilation
Similar to Bigloo Jsigloo is decomposed into several smaller
passes, which respectively execute a specific task. This first part
of the section will provide a small overview over Jsigloo’s archi-
tecture. The remainder of the section will then focus on the code
generation. The generic case is handled first, specially treated con-
structs are then discussed separately. Primarily Scheme-foreign
constructs likewith (Section 4.3) andswitch (Section 4.2) are
examined in their respective subsections, but the important func-
tion compilation has its own area (Section 4.4), too. Whenever a
generated code is dependent on previous optimizations we will
revisit the concerned passes.

A first lexing/parsing pass constructs an abstract syntax tree
(AST) composed of Bigloo objects representing Javascript con-
structs. Bigloo uses a CLOS like object system and it is hencepos-
sible to create procedures that dispatch calls according totheir type.
Jsigloo does not use any other intermediate representationother
than this AST. Passes just modify the tree or update the informa-
tion stored in the nodes.

An early expansion pass then removes some syntactic sugar
and reduces the number of used nodes. Immediately afterwards the
“Symbol” pass binds all symbols to variables. The followingpass
continues the removal of syntactic sugar. The optimizationpasses
and typing is then executed before Jsigloo reaches the backend.

The code generator still receives an AST and a simplified
version just needs to transform recursively the nodes to Scheme
expressions and definitions. Ignoring the previously mentioned
special cases and some last optimizations this transformation is
straight-forward. Jsigloo just recursively dumps the nodes us-
ing generic functions and methods which are dispatched ac-
cording to the type of their first argument (define-method).
Figure 2 contains the implementations of the generic method
generate-scheme for theBlock andIf nodes as well as the pro-
ceduregenerate-indirect-call used for creating unoptimized
function calls.

Javascript and Scheme are very similar, and this can be seen
at this level: many implementations ofgenerate-scheme just re-
trieve the members of the node (with-access), transform them,
and plug them into escaped Scheme lists. Most of the time only
minor adjustments are needed. TheIf-method at line9, for in-
stance, needs to boolify the condition expression first. That is, in
Javascript 0,null, undefined and the empty string are also con-
sidered to befalse, and conditional expressions need hence to
test for these values. As we already know the type (or a super-
set of possible types) of every expression, some of these tests can
be discarded at compile time. Instead of generating adaptedcode
for every boolify-expression Jsigloo uses macros. This waysome
complexity is moved outside the compiler itself into the runtime li-
brary. Macros are still evaluated at compile time, but now within
Bigloo. The js-boolify-generate-scheme function retrieves
all possible types of the given expression and passes them tothe
js-boolify typed macro (figure 3) as second parameter (the first

one being the transformed expression). The macro then automati-
cally discards all impossible configurations5.

Similar typed-macros are used in many other places. Even
though properties of Javascript objects are always referenced by
strings (obj.prop is transformed intoobj["prop"]), the expres-
sion within the brackets can be of any type. Javascript therefore
performs an implicit conversion to string for every access.For in-
stance the0 in obj[0] is automatically converted into"0". obj[0]
andobj["0"] reference hence the same property. The conversion
is in this case performed by the->string typed-macro which
reduces the tests as much as possible. Another implicit conversion
is executed for numeric operators which convert their operands to
numbers (->number typed). Generally every conversion has its
typed pendant which is used whenever possible.

1: (define-method (generate-scheme b::Block)
2: (with-access::Block b (elements)
3: ‘(begin

4: #unspecified ; avoid empty begin-blocks
5: ,@(map generate-scheme elements))))
6:
7: (define-method (generate-scheme iff::If)
8: (with-access::If iff (test true false)
9: ‘(if ,(js-boolify-generate-scheme test)
10: ,(generate-scheme true)
11: ,(generate-scheme false))))
12:
13: (define (generate-indirect-call fun this-arg args)
14: ; JS ensures left-to-right evaluation of arguments.
15: (if (or (null? args) ; 0 arguments
16: (null? (cdr args))) ; 1 argument
17: ‘(js-call ,fun
18: ,this-arg
19: (vector ,@(map out args)))
20: (let ((tmp-args (map (lambda (x)
21: (gensym ’tmp-arg))
22: args)))
23: ‘(let* (,@(map (lambda (tmp-name arg)
24: (list tmp-name
25: (out arg)))
26: tmp-args
27: args))
28: (js-call ,fun
29: ,this-arg
30: (vector ,@tmp-args))))))

Figure 2. the generate-scheme-code methods for some selected
nodes.

Some Javascript constructs need more than just these minor
adjustments though. In particularswitch, with and even the well
knownwhile do not have corresponding Scheme expressions. Due
to various optimizations, functions too are not directly mapped to
their Scheme counterparts and are therefore discussed in a separate
subsection.

4.1 While Translation

The straightforward intuitive compilation of

1: while(test) body

to

1: (let loop ()
2: (if test
3: (begin

4: body
5: (loop))))

5 The actualjs-boolify typed in the Jsigloo-runtime even removes the
test for the type, if the expression can only have one single type. The given
code sample also misses some other object-tests.
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1: (define-macro (js-boolify typed exp types)
2: (let ((x (gensym ’x)))
3: ‘(let ((,x ,exp))
4: (cond
5: ,@(if (member ’bool types)
6: ‘(((boolean? ,x) ,x))
7: ’())
8: ,@(if (member ’undefined types)
9: ‘(((eq? ,x ’undefined)
10: #f))
11: ’())
12: ,@(if (member ’null types)
13: ‘(((eq? ,x ’null)
14: #f))
15: ’())
16: ,@(if (member ’string types)
17: ‘(((string? ,x)
18: (not (string=? ,x ))))
19: ’())
20: ,@(if (member ’number types)
21: ‘(((number? ,x)
22: (not (=fl ,x 0.0))))
23: ’())
24: (else #t)))))

Figure 3. js-boolify typed used the calculated types to optimize the
conversion.

misses an important point: loops in Javascript can be interrupted
(break) or shortcut (continue). These kind of break-outs require
eithercall/cc (or similar constructs) or exceptions. Jsigloo uses
Bigloo’s bind-exit, a call/cc that can only be used in the
dynamic extend of its form:

1: (bind-exit (break)
2: (let loop ()
3: (if test
4: (begin

5: (bind-exit (continue)
6: (body))
7: (loop)))))

In the current Bigloo version non-escapingbind-exits are
not yet optimized though6 and a bind-exit removal pass has been
implemented.

We usedbind-exits not just in loops, but also for theswitch-
breaks (see next section) or the function-returns. In certain cases
there is no easy way of avoiding them, but the following transfor-
mations are able to remove most of them. The following three sam-
ples represent some cases where our analysis allows to eliminate
bind-exits.

1: (lambda (x)
2: (bind-exit (return)
3: (if (eq? x ’null) (return ’undefined))
4: ;do something
5: ))

1: (bind-exit (return)
2: ; do something
3: (if test
4: (return ’any)
5: (return ’thing))
6: )

6 Bigloo’s bind-exit supplies a closure, which, when invoked, unwinds
the execution flow to the end ofbind-exit’s definition (not unlike excep-
tions caught by acatch). Jsigloo uses only a small part ofbind-exit’s
functionality. The supplied closure never leaves the current procedure, and
in this case invocations of bind-exit can be transformed into simplegotos.
Future versions (post 2.7) of Bigloo will contain such an optimization.

1: (lambda (x)
2: (bind-exit (return)
3: ; do something
4: (return result)))

All these examples are based on thereturn statement, but
similar examples exist with thecontinue keyword of thewhile
statement.

Our optimization relies on two observations:

• If an if-branch does not finish its execution but is interrupted
(break, continue, return or throw) any remaining state-
ments following theif can be attached to the other branch of
theif7.

• Any invocation of the escaping closure, directly followed by the
end of the surroundingbind-exit is unnecessary and can be
removed.

The first observation allows to transform the first example into:

1: (lambda (x)
2: (bind-exit (return)
3: (if (eq? x ’null)
4: (return ’undefined)
5: ;do something
6: )))

Under the assumption that thereturns have not been used
elsewhere in the code, allbind-exits can now be removed thanks
to the second rule:

1: (lambda (x)
2: (if (eq? x ’null)
3: ’undefined
4: ;do something
5: ))

1: ; do something
2: (if test
3: ’any
4: ’thing)

1: (lambda (x)
2: ; do something
3: result)

This optimization removes all but onebind-exit from the 33
bind-exits found in our test-cases and benchmarks.

4.2 Switch Construct

Javascript’sswitch statement allows control to branch to one
of multiple choices. It resembles Scheme’scase and cond ex-
pressions, which serve the same purpose. As we will see, neither
of them has the same properties as the Javascript construct,and
switch therefore need to be translated specially.

Javascript permits non-constant expression ascase clauses and
in the following exampleexpr1, expr2 and expr3 could thus
represent any Javascript expression (including function-calls):

1: switch (expr)
2: case expr1: body1
3: case expr2: body2
4: default: default body
5: case expr3: body3

It is therefore not possible to mapswitch to Scheme’scase
which only works with constants. Scheme’scond, on the other

7 If neither branch finishes normally, the remaining statements are dead
code, and can hence be removed.
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hand, evaluates arbitrary expressions, and if it was not forJava-
script’s “fall-throughs”, aswitch statement would be easily com-
piled into an equivalentcond expression:

1: (let ((e expr))
2: (cond
3: ((eq? expr1 e) body1)
4: ((eq? expr2 e) body2)
5: ((eq? expr3 e) body3)
6: (else default body))

As it is, a case-body falls through and continues to execute the
body of the next case-clause (unless, of course, itbreaks out of the
switch). To simulate these fall-throughs Jsigloo wraps thebodies
into a chain of procedures. Each procedure calls the following body
at the end of its corps and hence continues the control-flow atthe
beginning of the next clause’s body.breaks are simply mapped to
bind-exits and are not yet specially treated.8

The following code demonstrates this transformation applied to
our previous example:

1: (bind-exit (break)
2: (let* ((e expr)
3: (cond-body3 (lambda () body3))
4: (cond-default (lambda ()
5: default-body
6: (cond-body3)))
7: (cond-body2 (lambda ()
8: body2
9: (cond-default)))
10: (cond-body1 (lambda ()
11: body1
12: (cond-body2))))
13: (cond
14: ((eq? expr1 e) (cond-body1))
15: ((eq? expr2 e) (cond-body2))
16: ((eq? expr3 e) (cond-body3))
17: (else (cond-default)))))

Even though Javascript’s default clause does not need to be the
last clause, it is only evaluated once all other clauses havebeen
tested. It is therefore safe to use thecond’s else-clause to invoke
the default body, but care must be taken to include its body inthe
correct location of the procedure-chain.

4.3 With Statement

The access to the propertyprop of a Javascript-objectsobj is
usually either done by one of the following constructs:obj.prop
or obj["prop"]. A third construction, thewith-keyword, pushes
a complete object onto the scope stack which makes all contained
properties equivalent to local variables. Within interpreters this
operation is usually trivial. The interpreter just needs toreuse
the Javascript object type as representation of a scope. When it
encounters awith it pushes the provided object onto their internal
scope-stack. Compilers do not use explicit scope objects though,
and pushing objects onto the stack is just not feasible.

Moreover, an efficient compilation of thewith-statement is
extremely difficult. As Javascript is a dynamically typed language
it is not (always) possible to determine the type and hence the
properties of thewith-object. Even worse: Javascript objects might
grow and shrink dynamically. It is possible to add and remove
members at runtime. The following code shows an example where
a variable within a closure references two different variables even
though the same object is used.

8 The current transformation has been implemented followinga suggestion
of a reviewer, and it was not possible to remove thebind-exits in this
short time-frame.

1: var o = new Object();
2: function f(x)
3: {
4: with(o) {
5: return function() { return x; };
6: }
7: }
8: g = f(0);
9: g(); // => 0;
10: o.x = 1; // adds x to o
11: g(); // => 1;

During the first invocation (line9) of the anonymous function
of line 5 theo object does not yet containx and the referencedx is
hence the one of the functionf. After we addedx to o another call
to g references the object’sx now.

It is therefore nearly impossible to find the shadowed variables
when entering awith-scope, but a test needs to be done at every
access. As a result Jsigloo replaces all references to potentially in-
tercepted variables by a call to a closure which is then inlined by
Bigloo. This closure tests for the presence of a same-named mem-
ber in thewith-object, and executes the operation (eitherget or
set) on the selected reference. Note thatwith constructs might be
nested, and in this case the operation on the “selected reference”
involves calling another function. This transformation (in a simpli-
fied version) is summarized in the following code snippet.

1: with(o) {
2: x = y;
3: }

becomes

1: (let ((x-set! (lambda (val) (if (contains o x)
2: (set! o.x val)
3: (set! x val))))
4: (y-get (lambda () (if (contains o y) o.y y))))
5: (x-set! (y-get)))

This approach obviously introduces a performance penalty and
together with the sometimes unexpected results (like the closure
referencing different variables) a widely accepted recommendation
is to avoidwith completely [7].

4.4 Function Compilation

The function translation is the arguably most challenging part of a
Javascript to Scheme compiler. Not only is Javascript a functional
language where functions are frequently encountered, Scheme
compilers usually optimize functions, and a good translation can
reuse these optimizations. This section will restate the major dif-
ferences between Javascript functions and Scheme procedures. We
will then discuss each point separately, and detail how Jsigloo han-
dles it. Bigloo is often unable to optimize Jsigloo’s generic transla-
tion of functions, and the last part of this section presentsJsigloo’s
optimizations for functions.

Three primary features make the function translation from Java-
script to Scheme difficult (for a more detailed discussion see Sec-
tion 2):

• Every Javascript function can serve as method too. In this case
every occurrence of the keywordthis in the function’s body is
replaced by the object on which the function has been invoked.
Otherwisethis is replaced by theglobal object.

• It is possible to call every function with any numbers of argu-
ments. Missing arguments are automatically filled withunde-
finedand additional ones are stored in theargumentsobject.

• Javascript functions are objects.

Jsigloo’s compilation of thethis keyword is straightforward:
When translating functions an additional parameterthis is added
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in front and all call-sites are adjusted: method calls pass the at-
tached object as parameter, and function calls pass theglobal ob-
ject.

Javascript functions can be called with any number of argu-
ments and an early version of Jsigloo compiled functions to the
intuitive form(lambda (this . args) body) to use Scheme’s
variable arity feature. Some measurements revealed that Bigloo
was more efficient, if vectors were used instead of the implicit lists.
At the call-sites a vector of all parameters is constructed,and then
passed as second parameter after thethis. A translated function is
now of the following form:(lambda (this args-vec) body).

Inside the function every declared parameter is then represented
by a local variable of the same name. At the beginning of the pro-
cedure the local variables are either filled with their correspondent
values from the arguments vector, or set toundefined. Figure 4 con-
tains a simplified unhygienic version [8] of this process. The same
figure shows the result for the declared parametersa andb.

1: ‘(let* ((len (vector-length vec))
2: ,@(map (lambda (param-id count)
3: ‘(,param-id (if (> len ,count)
4: (vector-ref vec ,count)
5: ’undefined)))
6: param-list
7: (iota (length param-list))))
8: ,body)

1: (let* ((len (vector-length vec))
2: (a (if (> len 0) (vector-ref vec 0) ’undefined))
3: (b (if (> len 1) (vector-ref vec 1) ’undefined)))
4: body)

Figure 4. the Jsigloo-extract at the top generates the code responsible for
extracting the values out of the passedvec. The code at the bottom gets
generated for the parametersa andb.

After the variable extraction Jsigloo creates the arguments ob-
ject. As thearguments-entries are aliased with the parameter vari-
ables (a andb in the previous example) we use the same technique
as for thewith statement: the entries within thearguments ob-
ject are actually closures modifying the local variables. Additional
arguments access directly the values within the vector. Figure 5
demonstrates this transformation.

As has already been stated in Section 3, Javascript functions are
mapped to the Bigloo classJs-Fun, which contains a fieldfun
holding the actual procedure. Jsigloo’s runtime library provides the
proceduremake-js-function, which takes a Scheme procedure
with its arity and returns such an object. Jsigloo only needsto
translate the bodies of Javascript functions, and generatecode,
that calls this runtime procedure with the compiled function as
parameter . The returned object of typeJs-Fun is compatible
with translated Javascript objects. As the compiled function is now
stored within an object, function calls are translated intoa member
retrieval, followed by the invocation of the received procedure.

The overhead introduced by these transformations is substan-
tial: the compilation of the simple Javascript functionfunction
f(a, b) {} produces a Scheme expression of more than 20 lines,
and the applied transformations are extremely counter-productive
to Bigloo’s optimizations. Storing the procedure in an object ef-
ficiently hides it from Bigloo’s analyses. The Storage Use Anal-
ysis [15] (henceforth SUA), responsible for typing, and Bigloo’s
inlining pass are both powerless after this transformation. The ar-
guments are then obfuscated by storing them in vectors, where
Bigloo’s constant propagation can not see them. When building the
arguments objects they are furthermore accessed from inside a clo-
sure, which makes them slower to access.

1: ‘(let ((len (vector-length vec))
2: (arguments (make-Arguments-object)))
3: ,@(map (lambda (param-id count)
4: ‘(if (> len ,count)
5: (add-entry arguments
6: (lambda () ,param-id)
7: (lambda (new-val)
8: (set! ,param-id new-val)))))
9: param-list
10: (iota (length param-list)))
11: (let loop ((i ,(length param-list)))
12: (if (> len i)
13: (begin

14: (add-entry arguments
15: (lambda () (vector-ref vec i))
16: (lambda (new-val)
17: (vector-set! vec i new-val)))
18: (loop (+ i 1)))))
19: ,body)

1: (let ((len (vector-length vec))
2: (arguments (make-Arguments-object)))
3: (if (> len 0)
4: (add-entry arguments
5: (lambda () a)
6: (lambda (new-val) (set! a new-val))))
7: (if (> len 1)
8: (add-entry arguments
9: (lambda () b)
10: (lambda (new-val) (set! b new-val))))
11: (let loop ((i 2))
12: (if (> len i)
13: (begin

14: (add-entry arguments
15: (lambda () (vector-ref vec i))
16: (lambda (new-val)
17: (vector-set! vec i new-val)))
18: (loop (+ i 1)))))
19: body)

Figure 5. the Jsigloo code at the top is responsible for thearguments

creation in the emitted result. The bottom is generated for parametersa and
b.

Jsigloo contains some optimizations addressing these issues. A
simple one eliminates unnecessary lines: the creation of the argu-
ments object is obviously only needed if the variablearguments is
referenced inside the function. Otherwise Jsigloo just omits these
lines.

In order to benefit from Bigloo’s optimizations the indirect
function calls need to be replaced by direct function calls wherever
possible. Jsigloo’s analysis is still relatively simple, but it catches
the common case where declared (local or global) functions are
directly called. The optimization is not yet correct though, and in
its current form it needs to set an important restriction on the input:
the given program must not modify any declared functions over
the global object or in aneval statement. Section 6 discusses the
necessary changes for the removal of this restriction.

Single Assignment Propagation (SAP) performs its optimiza-
tion in two steps. First it finds all assignments to a variableand
stores it in a set. Then it propagates constant values (including func-
tions) of every variable that is assigned only once in the whole pro-
gram.

Computing the definition-set is easy, but not trivial: Javascript
automatically sets all local variables toundefinedat the beginning
of a function, and nearly every variable is hence modified at least
twice. Once it is assigned toundefinedand then to its initial value.
Declared functions (global and local) are immediately set to their
body and are hence treated accordingly. For all others a data-flow
analysis needs to determine, if the variable might be used unde-
fined. This analysis is mostly intraprocedural, and only needs one
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pass. Some parts are however interprocedural as escaping variables
cross function boundaries. Take for instance the followingcode:

1: function f() {
2: var y = 1;
3: var g = function() { return x + y + z; };
4: var z = 2;
5: g();
6: var x = 3;
7: return x + y + z;
8: }

Even though withinf the variablex is read only after the defi-
nition in line6, the call at line5 still uses the undefined variable.y
on the other hand is always used after its first (and unique) defini-
tion. Usually these cases are difficult to catch, but SAP manages to
find at least the most obvious ones: if a variable is defined before
an anonymous function has been declared (as is the case fory in
our example), the analysis does not add the implicitundefineddef-
inition to the variables definition set. SAP does hence correctly set
y’s definition set to the assignment in line2, but will find two defi-
nitions forz. At the moment ofg’s declarationz is still undefined,
and as it is used withing the final definition set ofz will hold the
implicit undefined-definition and the assignment at line4.

The implicit undefinedassignments are disturbing Bigloo’s op-
timizations too. Whenever in doubt Jsigloo sets the variable toun-
definedat the beginning of a function. One of the first analyses
Bigloo applies is the SUA-analysis, which detects the assignment
of undefinedand types the variable accordingly. Even if Bigloo is
able to remove this assignment later on, it will not retype the vari-
able, and misses precious optimization opportunities.

Once the definition-set has been determined, a second pass
propagates “single assignments”. If a variable has only oneassign-
ment in its definition set, and this assignment sets the variable to
a constant value or a Javascript function, all occurrences of this
variable are replaced by either the constant, or by a reference to
this function. In our example the line7 still usesx andz, as their
definition-sets contain more than one assignment. The optimization
transforms our previous example into the following code:

1: function f() {
2: var y = 1;
3: var g = function() { return x + 1 + z; };
4: var z = 2;
5: anonymous g();
6: var x = 3;
7: return x + 1 + z;
8: }

Wherever the backend finds direct function-references it isnow
able to optimize the call. Instead of extracting the procedure from
the function object it can use the function-reference. The previous
creation of function objects must first be modified to allow access
to the procedure:

1: (set! direct f (lambda (this vec) body))
2: (set! f (make-js-function direct f 2))

In our benchmarks and test-cases 27% of all function calls could
be replaced by direct function calls after this analysis.

Wherever Jsigloo is able to replace the indirect calls with direct
calls it can also improve the parameter passing. The function’s sig-
nature provides the expected number of arguments, and the parame-
ters do not need to be hidden in a vector anymore. If there are miss-
ing arguments, they can already be filled withundefinedconstants
at compile-time. An additionalarg-nb parameter passes the orig-
inal number of arguments, which is needed for the creation ofthe
arguments object. The last argument finally contains additional ar-
guments, that have not been mapped to direct parameters. They will

be used duringarguments creation, too. Obviously the generic call
needs to be adapted too, and the parameter-extraction of figure 4 is
lifted into the procedure passed to themake-js-function.

Many functions do not usethis and in this case the first ar-
gument can be removed. The same is of course true forarg-nb
and rest-vec, which are only needed, if the function uses the
arguments-object. Our running example is finally transformed into
the following code:

1: (set! direct f (lambda (a b) body))
2: (set! f (make-js-function
3: (lambda (this vec)
4: (let* ((len (vector-length vec))
5: (a (if (> len 0)
6: (vector-ref vec 0)
7: ’undefined))
8: (b (if (> len 1)
9: (vector-ref vec 1)
10: ’undefined)))
11: (direct f a b))
12: 2))

Applying these optimizations to the well known Fibonacci func-
tion let the size of procedure drop from more than 75 to about 20
lines9, and reduce execution time by a factor of more than 20.

5. Performance
Ack Fib Meth Nest Tak Hanoi

Jsigloo J 1931 443 185 898 28 424
Rhino 1042 666 155 973 55 619

Jsigloo C 513 368 84 1060 11 368
Konqueror - 17183 262 15478 593 21049

Firefox - 3179 227 1808 79 2762
NJS - 767 23 1481 25 734

Jsigloo is not yet finished, and the given benchmarks (see theap-
pendix for the sources) are therefore just indications. As we wanted
to be able to run our benchmarks on most existing Javascript im-
plementations we decided to move the time-measurement intothe
benchmark itself. This way it was possible to benchmark Inter-
net browsers too. At the same time we lost the start-up overhead,
and the more precise measurement of the Linux kernel. All times
have been taken under a Linux 2.6.12-nitro on an AMD Athlon
XP 2000+, and are expressed in Milliseconds. We used Sun’s JDK
1.4.2.09 (HotSpot Client VM, mixed mode) and GCC 3.4.4. We ran
every benchmark at least three times, and report the fastestmea-
sured time here. Konqueror [2], Firefox [1] and NJS [3] wherenot
able to complete Ack (stack overflows) and do not have a time for
this benchmark.

“Jsigloo J” uses Bigloo’s JVM backend, whereas “Jsigloo C”
targets C, followed by a compilation to native code. “Rhino”, in
version 1.6R2RC2, compiles Javascript directly to JVM bytecode
and competes hence with “Jsigloo JVM”. The fastest time on the
JVM machine is underlined. “Konqueror” 3.4.2, “Firefox” 1.0.6
and “NJS” 0.2.5 are all interpreters (even though NJS was allowed
to precompile the Javascript code into its bytecode format)and are
compared to “Jsigloo C”. The fastest time is in bold.

During the development these benchmarks have been (and are
still) used to pinpoint weak spots of Jsigloo, which were then
improved. One of the first benchmarks has been Fibonacci, which
explains Jsigloo’s good results in some of the other call-intensive
benchmarks (Hanoi and Tak). “Nest”, as the name hints, increments
a number within nested loops. We verified our results and for
this benchmark the Java version is actually faster than the native

9 We are well aware, that this is still far away from a standard 5lines
implementation, but most of the resting lines are redundantlets, begins
or #unspecified which are easily removed by Bigloo.
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C version. The JVM version of Ackermann is still slower than
Rhino’s code, but we have pinpointed the source of inefficiency
and a generic transformation brings the time for “Ack” down to the
same level as Rhino. “Meth” on the other hand makes heavy use of
anonymous functions and objects, and this part of Jsigloo isnot yet
optimized at all.

Note, that Jsigloo is not conformant to the ECMA specification
(see Section 6), and has therefore an unfair advantage over the com-
petitors. Some tests showed that Fibonacci’s execution time would
double if the global object was treated correctly. Other experiences
however confirmed, that for instance a fully optimizing Rhino is
not conformant either, and especially theglobal objectis equally
ignored.

6. Future Work
Jsigloo is not finished. Several Javascript features have not yet
been implemented and some parts of Jsigloo are not conformant to
the ECMA specification. From the more than 10 runtime objects,
only two have been written until now (in particular theBoolean,
String, Number andDate objects are still missing). Due to limi-
tations in the used lexer-generator, some syntactic sugar is missing
too (Javascript’s automatic semicolon insertion and its regular ex-
pression literals).

At the moment Jsigloo does not handle the global object cor-
rectly either. It is not possible to modify global variablesover an
object, and function calls receive a standardObject asthis. We
intend to fix this shortcoming by adding two strategies:

• a “correct” solution using a special global object, that holds
closures. Whenever a field is modified the closure automati-
cally updates the real global object. (Inversely reading from the
global object automatically redirects to the real global variable).
A similar strategy is already being used for thearguments ob-
ject and thewith translation.

• a fast implementation which disallows the use of the global
object. Every access to the global object throws an exception.

The eval function is missing too. Javascript’s and Scheme’s
eval specification are different and incompatible, but Bigloo pro-
vides some extensions to Scheme’seval which should allow the
implementation without too much trickery.

Once either theeval-function or the global object is correctly
implemented, the SAP optimization of Section 4.4 needs to be
adapted. Functions that are visible toeval statements and global
functions might not be called directly anymore.

Finally the number representation needs to improved. Javascript
numbers are mapped to Scheme doubles. In R5RS [12] doubles do
not provide enough functionality to correctly represent Javascript
numbers, but R6RSwill extend Scheme’s number specification, and
we will revisit this topic once R6RS has been released.

7. Conclusion
We presented in this paper Jsigloo, a Javascript to Scheme com-
piler we implemented during the last five months. Together with
Bigloo it compiles Javascript to Java byte-code, C, or .NET CLI.
In the introduction we listed the features Jsigloo should have. We
wanted the compiler to be small. Jsigloo is not very big, but with
about 30.000 lines of Scheme code Jsigloo is not small anymore. It
is still easy to maintain the project, but the effort required is higher
than we hoped it would be. Jsigloo’s size is explained by the op-
timizations we integrated in Jsigloo, and preliminary benchmarks
show that Jsigloo/Bigloo has the potential to be as fast as the fastest
existing Javascript compilers. As Jsigloo uses Bigloo it interfaces

with all languages Bigloo interfaces and excels in this area. Fur-
thermore, if Bigloo improves, Jsigloo/Bigloo will improvetoo.

Despite Javascript’s resemblance to Scheme, we could not take
full advantage of all Bigloo optimizations and needed to imple-
ment additional optimization passes. SAP (Section 4.4) enhances
direct method calls, abind-exit-removal pass (Section 4.1) elim-
inates unnecessary (but currently expensive)bind-exits, and typ-
ing (Section 3) improves the ubiquitous conversions of Javascript
and helps several Bigloo optimization by providing Javascript-
specific type information.

Compiling to Scheme and using an efficient existing Scheme
compiler did not fulfill all our expectations, but still yielded an
interesting compiler. Once all missing features are implemented
Jsigloo may be an attractive alternative to all other Javascript com-
pilers.
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8. Appendix
Benchmarks

Ackermann

1: function ack(M, N) {
2: if (M == 0) return(N + 1);
3: if (N == 0) return(ack(M - 1, 1));
4: return(ack(M - 1, ack(M, (N - 1))));
5: }
6:
7: ack(3, 8);

Fibonacci

1: function fib(i) {
2: if (i < 2)
3: return 1;
4: else
5: return fib(i-2) + fib(i-1);
6: }
7: fib(30);
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Method Calls

1: function methcall(n) {
2: function ToggleValue () {
3: return this.bool;
4: }
5: function ToggleActivate () {
6: this.bool = !this.bool;
7: return this;
8: }
9:
10: function Toggle(start state) {
11: this.bool = start state;
12:
13: this.value = ToggleValue;
14: this.activate = ToggleActivate;
15:
16: }
17:
18: function NthToggleActivate () {
19: if (++this.count > this.count max) {
20: this.bool = !this.bool;
21: this.count = 1;
22: }
23: return this;
24: }
25:
26: function NthToggle (start state, max counter) {
27: this.base = Toggle;
28: this.base(start state);
29: this.count max = max counter;
30: this.count = 1;
31:
32: this.activate = NthToggleActivate;
33:
34: }
35: NthToggle.prototype = new Toggle;
36:
37: var val = true;
38: var toggle = new Toggle(val);
39: for (i=0; i<n; i++) {
40: val = toggle.activate().value();
41: }
42: var tmp = (toggle.value() ? "true"
43: : "false");
44:
45: val = true;
46: var ntoggle = new NthToggle(val, 3);
47: for (i=0; i<n; i++) {
48: val = ntoggle.activate().value();
49: }
50: return (tmp + " " +
51: (ntoggle.value() ? "true"
52: : "false"));
53: }
54:
55: methcall(10000);

Nested Loops

1: function nested(n) {
2: var x=0;
3: var a=n;
4: while(a--) {
5: var b=n; while(b--) {
6: var c=n; while(c--) {
7: var d=n; while(d--) {
8: var e=n; while(e--) {
9: var f=n; while(f--) {
10: x++;
11: }
12: }
13: }
14: }
15: }
16: }
17: return x;
18: }
19:
20: nested(14);

Tak

1: function tak(x, y, z) {
2: if (!(y < x))
3: return(z);
4: else {
5: return (
6: tak (
7: tak (x-1, y, z),
8: tak (y-1, z, x),
9: tak (z-1, x, y)
10: ));
11: }
12: }
13:
14: tak(18, 12, 6);

Towers of Hanoi

1: function towers(nb discs, source, dest, temp) {
2: if (nb discs > 0) {
3: return towers(nb discs - 1,
4: source,
5: temp,
6: dest)
7: + 1
8: + towers(nb discs - 1,
9: temp,
10: dest,
11: source);
12: }
13: return 0;
14: }
15:
16: towers(20, 0, 1, 2);


