
The Essence of LR Parsing

Michael Sperber Peter Thiemann
Wilhelm-Schickard-Institut für Informatik

Universität Tübingen
Sand 13, D-72076 Tübingen, Germany

Abstract

Partial evaluation can turn a general parser into a parser gen-
erator. The generated parsers surpass those produced by tra-
ditional parser generators in speed and compactness. We
use an inherently functional approach to implement general
LR(k) parsers and specialize them using the partial evalu-
ator Similix. The functional implementation of LR parsing
allows for concise implementation of the algorithms them-
selves and requires only straightforward changes to achieve
good specialization results. In contrast, a traditional, stack-
based implementation of a general LR parser requires signif-
icant structural changes to make it amenable to satisfactory
specialization.

1 Introduction

We present two inherently functional implementations of gen-
eral LR(k) parsers: a direct-style first-order textbook version
and one using continuation-passing style (CPS) for state tran-
sitions. Neither requires the handling of an explicit parsing
stack.

These parsers, when specialized with respect to a gram-
mar and lookahead k, yield efficient residual parsers. To
achieve good results with offline partial evaluation, only a
small number of changes to the general parsers are neces-
sary:

• some standard binding-time improvements, notably some
applications of “The Trick” [9] as well as some dupli-
cation of procedures which occur in multiple binding-
time contexts,

• unrolling loops over lists to discard unneeded compu-
tations,

• prevention of infinite specialization of LR transitions
for the CPS-based parser.

We describe the most important applications of the above
improvements. The generated parsers are compact and are
either about as fast or faster than those presented by Mossin
[12]. His traditional stack-based parser requires substantial

changes in the representation of the stack, and thus the struc-
ture of the parsing algorithm. Furthermore, since the parse
stack is a static data structure under dynamic control, spe-
cialization suffers from termination problems. These issues
do not arise in our first-order approach as it does not deal
with explicit stacks at all. For the CPS approach, it is imme-
diately obvious where generalization is necessary to prevent
infinite specialization. Thus, the parsers modified for good
specialization retain the structure of their ancestors and most
of their simplicity.

The paper is organized as follows: the first section in-
troduces the basic concepts of LR parsing along with a non-
deterministic functional algorithm for it. Section 3 presents a
deterministic, first-order, direct-style implementation of the
algorithm in Scheme, and describes the binding-time improve-
ments made to it. Section 4 describes an alternative formu-
lation and Scheme implementation of functional LR parsing
using CPS, again with a description of the binding-time im-
provements made to it. Section 5 describes some additional
features which can be added to the parsing algorithms. Sec-
tion 6 gives the results of practical experiments, Sec. 7 dis-
cusses related work, and Sec. 8 concludes.

2 LR Parsing

2.1 Notational Preliminaries

We use mainly standard notation for context-free grammars.
However, the definition of bunches which follows is specific
to the functional interpretation of LR parsing.

A context-free grammar is tuple G = (N, T, P, S). N is the
set of nonterminals, T the set of terminals, S ∈ N the start
symbol, V = T ∪N the set of grammar symbols, and P the set
of productions of the form A → α for a nonterminal A and
a sequence α of grammar symbols. Additionally, V∗ denotes
the set of sequences of grammar symbols—analogously T∗

andN∗.
ε is the empty sequence, |ξ| is the length of sequence ξ.

Furthermore, αk denotes a sequence of k copies of α, and ξ|k

is the sequence consisting of the first k terminals in ξ.
Some letters are by default assumed to be elements of cer-

tain sets: A,B,C, E ∈ N; ξ, ρ, σ, τ ∈ T∗; x, y, z ∈ T ;
α,β, γ, δ, ν, µ ∈ V∗, and X, Y, Z ∈ V . All grammar rules in
the text are implicitly elements of P.
G induces the derives relation⇒ on V∗ with

α⇒ β :⇔ α = δAγ ∧ β = δµγ ∧ A→ µ

and ∗⇒ denotes the reflexive and transitive closure of ⇒. A

derivation from α0 to αn is a sequence α0, α1, . . . , αn where
αi−1 ⇒ αi for 1 ≤ i ≤ n. Leftmost-symbol rewriting V is a
relation defined as

BαV δβ :⇔ B→ δ∧ δ 6= ε

with reflexive and transitive closure
∗
V.

An LR(k) item (or just item) is a triple consisting of a pro-
duction, a position within its right-hand side, and a termi-
nal string of length k—the lookahead. An item is written as
A → α · β (ρ) where the dot indicates the position, and ρ is
the lookahead. If the lookahead is not used (or k = 0), it is
omitted.

An LR(k)-augmented grammar contains a terminal a de-
noting the end of the input, and a production S ′ → S ak
where S ′ appears in no other production. Thus, it is start-
separated, and all strings that can be derived from it end with
ak. All grammars used are assumed to be LR(k)-augmented.

A bunch is a nondeterministic choice of values. If the ai
are bunches, a1|a2| . . . |ak is a bunch consisting of the values
of a1, . . . , ak. An empty bunch is said to fail and therefore de-
noted by fail. In other words, | is the nondeterministic choice
operator with unit fail. A bunch used as a boolean expres-
sion reads as false when it fails, and true in all other cases.
Functions distribute over bunches. If a subexpression fails,
the surrounding expressions fail as well. For bunches P and
x, the expression P � a is a guarded expression: if the guard
fails the entire expression fails; otherwise the value of P � a
is a. For example, if P is a boolean expression (or a bunch),
and x is a bunch, then P � x means if P then x else fail. The
special guard x← a is a binding construct where x← a�a ′

denotes the choice of a ′ over all values x “returned” by a
(and fails if a fails). The scope of the variables in x (which
may be a pattern) is exactly the right-hand a ′.

2.2 Functional LR Parsing

A parser for a given context-free grammar is a function which
has a sequence of terminals ξ as its input. It finds a deriva-
tion starting from the start symbol leading to ξ. The tradi-
tional model of an LR parser is an automaton which oper-
ates on a stack of parser states where every state is a set of
items. When the automaton is in a certain state q, an item
A → α · β ∈ q means that it has seen α in the input and
is looking for β next. When β = ε, the parser makes the
decision to choose a derivation originating from A.

A functional LR parser is a set of mutually recursive func-
tions [q], each of which corresponds to an LR state q. [q](x1x2 . . . xn)
produces a bunch ranging over all possible derivations from
β with an A → α · β ∈ q such that β derives a prefix of
x1x2 . . . xn. Each derivation found is represented by the item
from which it originated and the rest of the input string not
yet parsed. The LR parsing algorithm presented here adheres
to the following specification (cf. [11]):

[q](x1x2 . . . xn) =
(
A→ α · β ∈ q∧ β

∗⇒ x1 . . . xj
)

�(A→ α · β, xj+1 . . . xn)

The initial state q0 of an LR parser consists just of the item
S ′ → ·S ak. S ∗⇒ x1 . . . xn holds iff (S ′ → ·S ak,ak) occurs
in the bunch produced by [q0] (x1 . . . xn ak).

A few auxiliary definitions are necessary to cast the defi-
nition into an algorithm. The firstk function (when construct-
ing an LR(k) parser) is needed for computing lookahead in-
formation:

firstk(α) :=
{
ξ : |ξ| = k ∧ α

∗⇒ ξβ
}

Each state q comes with a set of predict items

predict(q) :=
{
B→ ·ν (ρ) : A→ α · β (ρ) ⇓+ B→ ·ν (σ)

for A→ α · β (ρ) ∈ q
}

where ⇓+ is the transitive closure of the relation ⇓ defined
by

A→ α · Bβ (ρ) ⇓ B→ ·δ (σ) for all σ ∈ firstk(βρ).

The predict items are predictions on what derivations may
be entered next. The elements of predict(q) are exactly those
at the end of leftmost-symbol derivations starting from items
in q. The union of q and predict(q) is called the closure of q.
Henceforth, q := q ∪ predict(q) denotes the closure of a state
q.

All other states result from applications of goto where, for
a state q and a grammar symbol X:

goto(q, X) := {A→ αX · β (ρ) : A→ α · Xβ (ρ) ∈ q}

The general parser involves an auxiliary function [q] for each
state q. An invocation [q](X, x1 . . . xn) means that a gram-
mar symbol X, or a string derived from it has just been seen
in the input. The specification is

[q] (X, x1 . . . xn) =

(A→ α · β ∈ q∧ β
∗
V Xγ∧ γ

∗⇒ x1 . . . xj)
�(A→ α · β, xj+1 . . . xn)

Thus, [q] is called whenever the functional equivalent of a
“shift” action happens. Its implementation calls [goto(q, X)]
recursively and either returns the result (for a kernel item for
the form A → α · β where |α| > 0) or shifts the left side
nonterminal of the production (for a predict item of the form
C→ ·α), this is just a recursive call of [q].

Figure 1 gives an “implementation” of the above func-
tions detailing the algorithm underlying them based on the
presentation in [11]. The function [q] first “shifts” on the next
terminal symbol x. Additionally, if there is an ε-production
B → · in q, [q] shifts on B. Lastly, if q contains an item
A → α· that can be reduced, it returns that item along with
the part of the input string not yet seen. [q] first calls the func-
tion associated with goto(q, X) which returns an item and a
“rest string”. When the parser has arrived at a state contain-
ing an itemA→ α·, it returns through |α|−1 function invoca-
tions, moving the dot back by one on each return: A→ αX·γ
returned by [goto(q, X)] becomes A → α · Xγ. The second
alternative in [q] is considered when the dot has arrived at
the front of a right-hand side C→ ·Xδ by the process just de-
scribed. In that case, [q] shifts on the corresponding left-hand
side C.

Thus, the parsing stack of traditional LR parsers is im-
plicit in the “runtime stack” of the procedure calls. Note also,
that for returning through procedure invocations it is not re-
ally necessary to return the item itself: an integer counting
the number of levels left to return through along with the
left-hand side of the production is sufficient. Our implemen-
tation of the specification exploits this property.

3 Direct-Style Functional LR Parsing

A straightforward implementation of the LR (k) parsing al-
gorithm is obtained by making the specification in Fig. 1 de-
terministic. The [q] function is implemented by a function

[q](xξ) := [q](x, ξ)

| B→ · (ρ) ∈ predict(q) ∧ (xξ)|k = ρ

�[q](B, xξ)

| A→ α · (ρ) ∈ q∧ (xξ)|k = ρ
�(A→ α·, xξ)

[q](X, ξ) := A→ α · Xγ ∈ q ∧
(A→ αX · γ, τ)← [goto(q, X)] (ξ) � (A→ α · Xγ, τ)

| C→ ·Xδ ∈ predict(q) ∧

(C→ X · δ, τ)← [goto(q, X)] (ξ) � [q](C, τ)

Figure 1: Specification of a functional first-order LR parser

parser which accepts a set of items and the input list. It
produces a “parse result” which is one of (result-accept)
and (result-reduce lhs dot inp). The latter describes a
pair consisting of an item lhs → α · β where dot = |α| and
the remaining input inp. The actions-on-input function
returns only those actions which apply to the current looka-
head. Since there is no conflict detection there may be more
than one reduce action in that list. The implementation arbi-
trarily chooses the first action.

Parse results are subsequently processed by the function
act-on, the implementation of [q]. The main difference is
that act-on gets the result of calling [goto(q, X)](ξ) as an ar-
gument in place of the pair (X, ξ) and that the state q is im-
plicit since the definition is nested in parser. The (result-reduce
lhs dot inp) stands for a partially performed reduction of
a production with left side nonterminal lhs, the position dot
of the dot in the corresponding item, and the remaining in-
put inp. The function act-on catches the results of parser.
On the argument (result-reduce A r inp) there are two
possibilities. If r > 0 more symbols must be popped: in this
case act-on (and hence the surrounding parse) terminates
with (result-reduce A (r − 1) inp). Otherwise if r = 0
all symbols of the right-hand side of the reduced production
have been popped and parser is called on the current state
shifted by A and inp. The result is again act-on’d.

Notice that act-on is only called in tail-call position; in an
imperative language, it might be implemented with a while-
loop. One special case must be observed when shifting non-
terminals: an attempt to shift the new start symbol S ′ in
the initial state leads to (result-accept) if the input is ex-
hausted and generates an error otherwise.

3.1 Specializing the Direct-Style Parser

Apart from two places where “The Trick” is needed, the direct-
style parser specializes surprisingly well. There are no termi-
nation problems with the specialization, no explicit general-
izations need be inserted due to the absence of an explicit
stack in the functional parser and its first-order nature.

3.1.1 The Trick

“The Trick” is a well-known binding-time improvement [9].
It can be applied if a dynamic value d is known to belong to
a finite set F of static values. The context C[d] is replaced by
a loop

foreach s ∈ F do{
if s = d then C[s] else continue

}

which residualizes nicely to a cascade of tests where each oc-
currence C[s] is as static as possible and can be reduced by
the specializer.

Such a situation appears in two places in the parser: first
in actions-on-input, when selecting the applicable actions
based on the current state and the input, and second in shift-items-on-symbol,
when shifting a nonterminal after a reduction is completed.
In both cases we have introduced association lists of pairs
consisting of a lookahead and a set of actions. In the first
case the lookahead is a string of length k while it is just a
nonterminal symbol in the second case.

Checking the lookahead on the input is done in such a
way that the residual program does not contain superflu-
ous operations on the dynamic input list and expands into
a trie-like test cascade for k > 1. The very nature of the loop
through the association list ensures the effect of grouping the
default actions at the end of the tests. Section 4 shows the cor-
responding code in the CPS-based parser along with residual
code generated by the specializer. The solution in [12] re-
quires a programming trick on a CPS-version of the loop to
achieve the same effect.

The static loop to select the nonterminal shift-actions (in
shift-items-on-symbol) has a special property, by construc-
tion of the goto table: one of the tests in the loop is guaranteed
to succeed, since a nonterminal shift on A is only performed
after the reduction of a production A→ α. Hence the last al-
ternative to shift a nonterminal can be chosen without look-
ing at the nonterminal A.

The latter improvement requires reprogramming the loop:
the termination condition is modified so that the loop stops
at the one-element list and simply performs the shift without
testing. It is unlikely that an offline partial evaluator could
perform that automatically since it would have to infer the
above property. However, the necessary information could
be provided by user annotations.

3.1.2 Improvements due to Properties of LR Parsers

Furthermore we included an improvement that was already
observed by Mossin [12]: a state without items of the form
A → ·α does not have any shift actions on nonterminals.
The nonterminal/action association list need not be checked
in such a state since it is empty.

The check of the end of the input is only necessary in the
initial state of the parser, e.g. the closure of S ′ → ·S. Inserting
an explicit test for that state in the code prevents the special-
izer from duplicating the test in all versions of act-on.

Finally, the initial state can never return a result-reduce

(define (parser items inp)

(let ((state (closure items)))

(define (act-on result)

(let ((the-dot (rr-dot result))

(the-lhs (rr-lhs result))

(the-inp (rr-inp result)))

(if (not (zero? the-dot))

; still symbols in front of the dot: continue popping

(result-reduce the-lhs (- the-dot 1) the-inp)

; last symbol of rhs has just been popped:

; shift corresponding lhs and act-on goto (state, lhs)

(if (zero? the-lhs) ;reducing the start production?

(if (equal? (car the-inp) ’END-OF-INPUT)

(result-accept)

(err ’act-on "EOF expected"))

(act-on (parser (shift-items-on-symbol the-lhs state) the-inp))))))

(if (null? state)

(err ’parser "Illegal input ~s" inp)

(let* ((the-actions (actions-on-input inp state))

(s-items (get-shift-items the-actions))

(r-actions (get-reduce-actions the-actions)))

(if (null? r-actions)

(act-on (parser s-items (cdr inp)))

(let ((r-action (car r-actions)))

(if (null? (get-rhs r-action)) ; epsilon production?

(act-on (parser (shift-items-on-symbol (get-lhs r-action) state) inp))

(result-reduce (get-lhs r-action)

(- (length (get-rhs r-action)) 1)

inp))))))))

Figure 2: Scheme implementation of direct-style functional parser

since all its items have the dot at the beginning of their right-
hand sides. That removes another test in the residual code.

3.1.3 Constructed Data

We modeled the parse results as constructed datatypes with
the special forms provided for that purpose by Similix. As it
turns out, they are partially static for some call sites of act-on
but unfortunately this only gets apparent after specialization.
Thus the argument to act-on must be classified as dynamic
by any binding-time analysis. As a consequence, the residual
code contains fragments like the following:

(let ((result_8

(result-reduce 2 2 (cdr g-the-inp-4_2))))

(act-on-1-19 (rr-lhs result_8)

(rr-dot result_8)

(rr-inp result_8)))

where the rr-xxx functions are the selector functions for the
constructor result-reduce. The reduction of expressions
like the one shown above can be achieved by making Sim-
ilix’s postprocessing phase somewhat more aggressive. Care
must be taken, however, so as not to discard, duplicate, or
reorder computations.

The newly introduced rule unfolds (let ((x e1)) e2)
if e1 is a constructor application (C v1 . . . vk) for values
v1, . . . , vk (a value is either a variable or a constant, a con-
stant is either a literal constant or an evaluation-order-independent
primitive operator applied to constants) and all occurrences
of x in e2 are of the form (C-i x) (a selector) or (C? x) (a
constructor test).

Using the modified postprocessor effectively removed all
occurrences of the above pattern. However, in some cases

the pattern persisted since the constructor application was
hidden in a function application where the whole body was
a constructor application:
(define (tca-loop-0-13 one-reduce_0)

(result-reduce 1 0 one-reduce_0))

A further tweak in the postprocessor removes these function
calls as well: all functions whose bodies are just an applica-
tion of a constructor, selector, constructor test, or primitive
operation are unfolded (in addition to those that have only
one call-site).

As an aside, note that the reductions performed by the
postprocessor would have been performed by an online spe-
cializer anyway [17, 14].

Notice that duplication of code or using a polyvariant
binding-time analysis would not improve the situation. The
residual code shown above is generated from function ap-
plications (act-on (parser ...)) in the source program.
Since (parser ...) is a dynamic function call, its binding-
time is always dynamic, not partially static. This is actually
a well-known criticism on offline partial evaluators [14]. The
residual function call is only unfolded by the postprocessor
(if the specific specialized version is called only once) and the
redex only arises at postprocessing time.

Our experiments revealed the constructed values to be a
major performance bottleneck. The runtime of the residual
parsers improves by a factor of about 2 just by changing the
representation of the constructor result-reduce to a vector.

3.1.4 What You Get

All computations concerned with computing lookahead sets,
items, closures, and actions are classified as static, as desired.

(define (parser items inp)

(let ((state (closure items)))

→ (define (act-on the-dot)→ (let ((the-lhs (readvar-lhs))→ (the-inp (readvar-inp)))

(if (not (zero? the-dot))

; still symbols in front of the dot: continue popping→ (- the-dot 1)

; last symbol of rhs has just been popped:

; shift corresponding lhs and act-on goto (state, lhs)

(if (zero? the-lhs) ;reducing the start production?

(if (equal? (car the-inp) ’END-OF-INPUT)

’accept

(err ’act-on "EOF expected"))

(act-on (parser (shift-items-on-symbol the-lhs state)))))))

(if (null? state)

(err ’parser "Illegal input ~s" inp)

(let* ((the-actions (actions-on-input inp state))

(s-items (get-shift-items the-actions))

(r-actions (get-reduce-actions the-actions)))

(if (null? r-actions)

(act-on (parser s-items (cdr inp)))

(let ((r-action (car r-actions)))

(if (null? (get-rhs r-action))

; reducing epsilon production: shift the lhs

(act-on (parser (shift-items-on-symbol (get-lhs r-action) state) inp))→ (begin→ (set-lhs! (get-lhs r-action))→ (set-input! inp)→ (- (length (get-rhs r-action)) 1)))

Figure 3: Direct-style parser using imperative features

Only direct dependencies on the input and some parse re-
sults remain dynamic. The partial evaluator performs the
equivalent of the standard sets-of items construction on the
fly using its caching mechanism. Furthermore, it performs
an optimization on parse tables which is well-known in the
compiler community [3, Chap. 6.3]: parse tables can be sim-
plified by merging reduce actions with the immediately pre-
ceding shift action to a shift/reduce action if no conflicts can
arise.

The residual code contains some duplicated code for the
construction of results. However, experiments with insert-
ing memoization points to increase sharing of code have not
shown significant benefits.

3.2 Using Impure Features

Since the major bottleneck in the direct-style implementation
results from the necessity to deliver multiple results from a
function, we have looked at alternatives. One alternative,
the transformation into CPS, is discussed in the next section
since it has other intriguing features.

The other alternative is using impure features, i.e. side
effects to global variables. It can be observed that only one
(result-reduce ...) is live at any given time during the
execution. Therefore, it is safe to replace its components by
a couple of global variables. We choose to use global vari-
ables for the left-hand side nonterminal lhs and the remain-
ing input string inp and pass the position of the dot dot in
the right-hand side of the item as result. This is a reasonable
choice since dot is subject to change with every termination
of an invocation of parser. Figure 3 shows its implementa-

tion which is a simple variation of the code in Fig. 2 (the mod-
ified lines are indicated with →). The functions set-lhs!
and set-input! set the respective global variables to their
argument values. Notice that this is the only place in the
program where the global variables are changed.

4 Continuation-Based LR Parsing

The algorithm for LR parsing in Sec. 2.2 can be converted
into a more concise formulation using continuation-passing
style [15]. The CPS-based parser is also amenable to good
specialization. Note that the conversion to CPS is motivated
by the desire to simplify the formulation of the parsing algo-
rithm. It is not achieved through direct CPS transformation,
and does not constitute a binding-time improvement by itself
as is possible in many other contexts [9]. However, it allows
for further binding-time improvements that do not apply to
the direct-style version.

When the functional parser in Sec. 2.2 reduces by a pro-
ductionA→ α, it has to return through |α| invocations of LR
states—step by step. Continuations can be used to reach the
correct state at once. The CPS-based parser needs a few new
definitions. Each state q has an associated number of active
symbols nactive(q):

nactive(q) := max ({|α| : A→ α · β ∈ q} ∪ {0})

When the parser is in state q, nactive(q) is the maximal num-
ber of states through which it must return when it reduces by
a production in q.

For formulating the CPS-based LR parser, it is convenient
to make shifting on terminals subject to a condition. The set

(define (cps-parse grammar state input continuations)

(if (and (final? state grammar)

(null? input))

’accept

(let ((closure (append state (predict state grammar))))

(define (c0 symbol input)

(let ((next-state (goto closure symbol grammar)))

(cps-parse

grammar next-state input

(cons c0

(take (- (active next-state) 1) continuations)))))

(let ((item-set (accept closure)))

(if (not (null? item-set))

(let ((item (car item-set)))

((list-ref (cons c0 continuations)

(length (item-rhs item)))

(item-lhs item) input))

(if (member (car input) (nextterm closure grammar))

(c0 (car input) (cdr input))

’error))))))

Figure 4: CPS-based functional parser

nextterm(q) contains all terminals on which the LR state q
might perform a shift action:

nextterm(q) := {x : A→ α · xβ ∈ q}

With these definitions, the CPS version of the functional parser
is considerably simpler than the original: when a reduction
occurs, the CPS version directly calls the continuation be-
longing to the correct state instead of shifting the dot back
through multiple procedure invocations:

[q] (xξ, c1, . . . , cnactive(q)) :=

letrec
c0(X, ξ) =

[goto(q, X)]
(ξ, c0, c1, . . . , cnactive(goto(q,X))−1)

in A→ α · (ρ) ∈ q∧ (xξ)|k = ρ �c|α|(A, xξ)

| x ∈ nextterm(q) �c0(x, ξ)

Again, for purposes of implementation, we are mainly in-
terested in deterministic parsers. The LR(0) transliteration of
the above specification is shown in Fig. 4. The state state is
represented by a list of items, continuations is a list contain-
ing the c1, . . . , cnactive(state) from the specification. The (take
l n) function extracts the first n elements of the list l, accept
just extracts all items of the form A→ α· from the closure of
the current state.

The checking for lookahead to obtain parsers for k > 0
can be achieved in the same way as for the direct implemen-
tation in Sec. 3: A loop tests each of the next k input termi-
nals in sequence, and filters out those reduce items which
do not match it successively. Figure 5 shows the relevant
code: The select-lookahead-items function returns items
in item-set whose lookahead matches the first k terminals
of input. (The filter function takes a predicate and a list as
arguments and returns a list of those elements which match
the predicate.) The code takes care not to check any terminal
of the input for the same lookahead twice, as the specialized
version would do that as well.

4.1 Specializing the CPS-Based Parser

Just as with the parser in Sec. 3.1, a few improvements are
necessary to the naı̈ve implementation of the parser so that it
specializes well. The most obvious improvements presented
there apply to the CPS-based version as well such as check-
ing for the end of input only when in the final accepting state.
The CPS parser needs a few specific improvements, however:

4.1.1 The Trick

Just as with the parsing algorithm from Sec. 2.2, a number of
binding-time improvements are immediately obvious. The
parameter state becomes static when “The Trick” is used in
the application of the goto function. Here, the monovariance
of Similix’s binding-time analysis [2] requires some code du-
plication: since c0 is passed as a parameter to next-state,
both of its parameters necessarily become dynamic. Hence
there are three copies of the code for c0: for shifts on ter-
minals, for shifts on nonterminals, and for the reduction of
ε-productions.

Also, the select-lookahead-items function is subjected
to “The Trick” as its return values are elements of a static set.
The loop introduced by “The Trick” in c0 is amenable to the
same optimization as the parser in Sec. 3.1: since c0 (after its
duplication) can only be called with a nonterminal as its first
argument, the last case need not be checked.

4.1.2 Unrolling Loops over Lists

Unfortunately, the residual parsers still contain accesses to
continuations using list-ref as well as explicit construc-
tions using cons and take. Since the first argument to take,
(- (active next-state) 1), is static, it is beneficial to un-
fold the call. A canonical definition of take follows:

(define (take n inl)

(if (zero? n)

’()

(cons (car inl)

(take (- n 1) (cdr inl)))))

(define (select-lookahead-items item-set input)

(let loop ((item-set item-set) (pos 0) (input input))

(if (= pos k)

item-set

(if (null? item-set)

item-set

(let ((t (car input)))

(let loop-2 ((items item-set) (used-lookaheads ’()))

(if (null? items)

items

(let* ((item (car items))

(pos-lookahead (list-ref (item-lookahead item) pos)))

(if (member pos-lookahead used-lookaheads)

(loop-2 (cdr items) used-lookaheads)

(if (equal? t pos-lookahead)

(loop (filter (lambda (item)

(equal?

(list-ref (item-lookahead item) pos)

pos-lookahead))

item-set)

(+ pos 1) (cdr input))

(loop-2 (cdr items) (cons pos-lookahead used-lookaheads))))))))))))

Figure 5: Checking for lookahead

This implementation of take has one shortcoming: the last
recursive call to take evaluates (cdr inl) even though its
value is never needed. Similix, to preserve termination prop-
erties of the program (the call to cdr might fail—so Similix
assumes), inserts superfluous calls to (cdr inl) into the resid-
ual program. Inserting an additional test removes the defi-
ciency:

(define (take n inl)

(cond ((zero? n) ’())

((= n 1) (list (car inl)))

(else (cons (car inl)

(take (- n 1) (cdr inl))))))

Similar improvements can be made to the loop in select-lookahead-items
in Fig. 5 which touches one symbol of input too many.

4.1.3 Removing the List of Continuations

Using standard Scheme lists for storing the continuations in-
troduces another problem specific to Similix. Since it treats
cons, car, and cdr as primitive operations and not as con-
structors and selectors, storing the continuations in a list makes
them immediately dynamic [2, 1]. Even the first element of
the list

(list-ref (cons c0 continuations)

(length (item-rhs item)))

cannot be extracted if (length (item-rhs item)) is 0.
The first step in solving the problem is to replace cons,

car and cdr by calls to specially defined constructors for par-
tially static data which Similix provides for. In consequence,
list-ref and take also need to be adapted to use the new
primitives.

Now, Similix can unfold all references to elements of continuations.
This, unfortunately, leads to infinite specialization since Sim-
ilix tries to unfold all instances of a given continuation (that
is, in all possible call sequences that lead to it). This problem
can be solved by applying a version of the collapse opera-
tor [1] to all uses of c0. collapse stops the infinite specializa-
tion of the recursive occurrence of c0 in its own definition by

inserting a generalization operator (which is just a dynamic
identity function) nested in η-redexes. The η-redexes serve to
separate the binding times of the context from the generaliza-
tion operator. This separation is a general problem in offline
partial evaluators. Only recently an automatic solution to it
has been proposed [4].

The presence of collapse allows the specialization to stop
at the generalization point but to still generate specialized
code with respect to c0. Now, Similix completely reduces all
references to continuations, effectively removing all refer-
ences to the newly-defined list constructors.

This optimization is crucial for the performance of the
residual parsers; speed is improved by a factor of 2 through
it.

Figure 6 shows some residual code for an LR(2) parser
which also illustrates how the loop from Fig. 5 expands into
a cascade of cond/if expressions.

5 Additional Features

There are a few features that can be added to the parsers and
parser generators without problems.

5.1 Conflict Resolution

Conflict resolution techniques like SLR(k) and LALR(k) can
be implemented. Preliminary experiments with a general
SLR(k) parser (written in direct-style) show the expected re-
sults: specialization times get significantly shorter than for
the canonical parsers and the sizes of the residual parsers
shrink dramatically (see Table 1 in the next section). This
is, of course, the usual trade-off between canonical LR and
SLR/LALR parsers.

Including LALR parsers in our discussion would some-
what break the spirit of our approach. The computation of
the LALR(1) lookahead sets requires the presence of the canon-
ical collection of LR(0) items, which in our approach is only
known to the specializer. For a general parser suitable to par-
tial evaluation two approaches seem feasible:

(define (cps-parse-0-104 input_0 continuations_1)

(let ((t_2 (car input_0)))

(cond ((equal? t_2 ’quote)

(let ((input_6 (cdr input_0)))

(if (equal? (car input_6) ’lisp-s-exp)

(let ((input_11 (cdr input_6)))

(if (equal? (car input_11) ’r)

(let ((input_16 (cdr input_11)))

(if (equal? (car input_16) ’r)

(if (equal? (car (cdr input_16)) ’r)

(continuations_1 ’exp input_16)

(_sim-error ’cps-parse "Syntax error"))

(_sim-error ’cps-parse "Syntax error")))

(_sim-error ’cps-parse "Syntax error")))

(_sim-error ’cps-parse "Syntax error"))))

((equal? t_2 ’if)

(let* ((c_24 (lambda (x_22 y_23) #f))

(input_25 (cdr input_0))

(t_26 (car input_25)))

(cond ((equal? t_26 ’vname)

(cps-parse-0-219 (cdr input_25) (eta-expand-2-d-0-119 continuations_1 c_24)))

((equal? t_26 ’l)

(cps-parse-0-233 (cdr input_25) (eta-expand-2-d-0-119 continuations_1 c_24)))

(else (_sim-error ’cps-parse "Syntax error")))))

Figure 6: Residual code fragment of an LR(2) parser

1. The relevant part of the LR(0) item set collection is con-
structed in every state where a lookahead for a reduce
action is needed.

2. The entire LR(0) item set collection is computed once
and for all at the beginning of the program.

The first alternative would lead to unacceptable parser gen-
eration times, while the second leads to a design which is al-
most like a traditional parser generator: the partial evaluator
would only be employed to generate code from the general
parser, the construction of the LR automaton itself is done
“by hand.”

5.2 Semantic Actions

Semantic actions have been added to the direct style parser
at the cost of introducing an explicit attribute stack (which is
classified as dynamic by binding-time analysis). Only a sin-
gle synthetic attribute per symbol is currently allowed, but
that is not a real restriction in a language with higher-order
functions and structured datatypes. The semantic action for a
production is defined by a Scheme expression with free vari-
ables x1 to xn denoting the attribute values of the symbols
of the right-hand side of the production. The action is evalu-
ated when a result-reduce is created, the constructor sim-
ply gets an additional slot for the attribute value.

Similix does not provide for closures as part of its input
because this would require a special encoding. This short-
coming severely limits the usefulness of Similix for the gen-
eration of attribute-evaluating parsers because the semantic
actions cannot be represented by closures. Instead, Scheme
source expressions are needed. Evaluation is done by an in-
terpreter for a subset of Scheme (in our case the first-order
subset Scheme0 [9]) included with the parser. The special-
izer merely copies the text of the semantic actions from the
grammar to the residual program.

An alternative approach suitable for Similix would be to
simply load the subject grammar and the semantic actions

along with the parser. This would circumvent having to write
an interpreter, but suffers from obvious drawbacks: The gen-
eral parser and the subject grammar would not be indepen-
dent of each other, and therefore the approach would pre-
clude the generation of a parser generator.

5.3 Nondeterministic Parsing

Nondeterministic parsing can easily be added to the continuation-
based parser and hence to a parser generator by supplying
failure continuations. This has been implemented in MØRK [16].

6 Experimental Results

With both implementation models, the generated LR parsers
compare well with those generated by traditionally built parser
generators such as MØRK [16] as well as those produced by
the partial evaluation of a stack-based implementation pre-
sented in [12].

The two implementation models have different merits:
while the direct-style approach leads to more compact parsers,
the CPS-based parsers are faster in most cases. Table 1 shows
the sizes of the input grammars and the sizes of the gen-
erated parsers. The sizes are given in the number of cells
used for the Scheme representations. The column “Mossin”
gives numbers for parsers generated from Mossin’s general
parser, “LR” for the direct-style parsers, and “CPS-LR” for
CPS-based parsers. In column “SLR” we give the sizes of
the residual direct-style SLR(1) parsers. Furthermore, the col-
umn “MØRK” contains the size of a MØRK-generated parser.
Note that it is a LALR(1) parser (and hence the underlying
automaton is smaller) but also includes trivial semantic ac-
tions which MØRK inserts automatically. The example gram-
mars are those used by Mossin: G1 defines balanced paren-
theses,G2 arithmetic expressions, andG3 the language Mixwell
from [10]. We have used Similix 5.0 [1] for all our experi-
ments.

G Size (G) Mossin LR CPS-LR SLR MØRK
G1 24 1608 652 1236 491
G2 48 3751 2070 2999 1197
G3 123 6181 5870 7294 2700 6106

Table 1: Size of the residual parsers for k = 1 (in cons-cells)

G Size Mossin LR CPS-LR LR-Imp Bison
G1 2 0.0637 0.0986 0.0480 0.0439 0.0220

8 0.2030 0.2465 0.1343 0.0747 0.0586
28 0.6376 0.7474 0.4470 0.1896 0.1785

G2 3 0.1372 0.1732 0.0840 0.0554 0.0379
13 0.4213 0.6273 0.3689 0.1254 0.1123
35 0.9957 1.3755 0.9294 0.2605 0.2600

G3 9 0.1293 0.3509 0.1211 0.0671 0.0600
51 0.7699 1.6911 0.7523 0.3012 0.2847

186 2.6190 5.8680 2.9020 1.0130 0.9470
983 12.4240 31.0130 13.4630 4.5970 4.6280

Table 3: Speed of the residual parsers (timings in ms)

Mossin LR CPS-LR
5575 3494 5196

Table 2: Size of the parser generators (in cons-cells)

For the parser generators built by applying Similix’ com-
piler generator to the general LR(k) parser, similar results
hold (cf. Table 2): for the direct-style approach, it is signifi-
cantly shorter than those generated from Mossin’s parser and
from the CPS-based one. Notice that our parsers are both
general LR(k) parsers whereas Mossin’s does LR(1) parsing.

Table 3 shows the speed of the generated parsers over
different grammars and inputs of varying sizes. The mea-
surements were taken using Bigloo 1.7, a Scheme compiler
which generates C code, on an IBM RS/6000 model 320 with
24MB of real memory running AIX >3.2.5 with maximum
optimization. The C code was compiled using the native C
compiler, xlc 1.3. The last column shows timings for equiva-
lent LALR(1) parsers in C generated by Bison 1.22 and com-
piled with maximum optimization. The input for the Bison
parser was fed directly from a constant array containing the
token codes. Thus, all timings measure purely the parsing
time.

The timings indicate that the speed of our functional parsers
is within a factor of 2 of (with direct-style parsing) or sur-
passes (with the CPS approach) those generated from the
stack-based approach by Mossin in [12]. The imperative direct-
style version even surpasses those timings, and gets very
close to the Bison-generated parsers in speed. These results
prove the practicability of our approach. Earlier compar-
isons with MØRK using Scheme 48 indicate that the MØRK-
generated parsers run about as fast as the CPS-based ones
resulting from specialization—hardly a surprise since they
are both derived from the same specification.

We also compiled a parser generator resulting from self-
applying Similix with respect to the general parsers. For in-
stance, in the LR(1) case, generation time for a CPS-based
parser for G3 was 22 seconds. Generation time significantly
decreases for the SLR(1) case, however. It further decreases

when the generator is run on a state-of-the-art workstation;
another speed-up factor of four can be gained by using a
PowerPC 250 instead of the somewhat outdated 320. Since
it is possible to test a given grammar with the general parser,
it is expected that the parser generator will have to be ap-
plied less often than is the case with Bison-generated parsers,
for instance. Finally, it should be noted that the functions for
item manipulation are not written with speed in mind. Using
appropriate techniques [5] would result in further speed-up.
Therefore, even the time to generate the parsers is sufficient
for practical application.

7 Related Work

Of course, the pioneering work on functional LR parsing is
due to Pennello [13]. He gives a low-level implementation of
a direct-style functional parser.

An overview of functional parsing can be found in the
Leermakers’ book [11]. A summary along with a description
of the CPS-based approach is given by the first author [15].
He uses the CPS-based parsing algorithm to implement so-
phisticated attribute evaluation. The resulting algorithms are
used in the parser generator of the MØRK system for prepro-
cessor generation [16].

As already mentioned in the paper, in [12], Mossin uses
Similix to obtain specialized LR(1) parsers from general parsers
starting with a stack-based first-order approach which does
not specialize well. He transforms the stack data structure
into a continuation which pops elements off the stack. The
transformation complicates the program considerably and re-
quires intricate binding-time improvements and other opti-
mizations to achieve good specialization.

Another previous attempt to specialize general parsers is
described in [6].

8 Conclusion

We have used the automatic specializer Similix to generate
fast and compact LR(k) parsers from a general functional
parser and a reference grammar. We used two alternative ap-
proaches to implement the general parser: one which repre-

sents the parsing stack by the procedure call stack, the other
using continuation-passing style. No sacrifice of generality is
necessary to make the programs amenable to good special-
ization. There is no need to cater to specific optimizations
used in parser generators, or to k = 1.

Whereas a stack-based implementation of the parsing al-
gorithms requires a quite intricate transformation of the stack
data structure into a continuation to make it specialize well,
the functional approach needs only straightforward and well-
known improvements to generate good residual code.

The generated parsers are faster and more compact than
those generated by a straightforward parser generator. To-
gether with our observation that parsers generated by par-
tial evaluation compare well with yacc-generated parsers, we
think that our results are quite encouraging towards a real-
istic application of partial evaluation to deliver production-
quality parser generators. Work is planned to integrate our
approach with the parser generator of the MØRK system and
compare it with the previous implementation.

Availability The sources to the programs described in this
paper are available via the World Wide Web in URL http://
www-pu.informatik.uni-tuebingen.de/users/sperber/lr-essence/.

Acknowledgements We would like to thank Christian Mossin
for graciously supplying us with the source code of his pro-
grams and sample inputs. Thanks are also due to the PEPM
referees who provided detailed and constructive comments.

References

[1] BONDORF, A. Similix 5.0 Manual. DIKU, University of Copen-
hagen, May 1993.

[2] BONDORF, A., AND JØRGENSEN, J. Efficient analyses for realis-
tic off-line partial evaluation. Journal of Functional Programming
3, 3 (July 1993), 315–346.

[3] CHAPMAN, N. P. LR parsing: theory and practice. Cambridge
University Press, Cambridge, UK, 1987.

[4] DANVY, O., MALMKJÆR, K., AND PALSBERG, J. The essence
of eta-expansion in partial evaluation. In Proc. ACM SIG-
PLAN Workshop on Partial Evaluation and Semantics-Based Pro-
gram Manipulation PEPM ’94 (Orlando, Fla., June 1994), P. Ses-
toft and H. Søndergaard, Eds., University of Melbourne, Aus-
tralia, pp. 11–20. Technical Report 94/9, Department of Com-
puter Science.

[5] DEREMER, F., AND PENNELLO, T. Efficient computation of
LALR(1) look-ahead sets. ACM Transactions on Programming
Languages and Systems 4, 4 (Oct. 1982), 615–649.

[6] DYBKJÆR, H. Parsers and partial evaluation: An experiment.
Student Report 85-7-15, DIKU, University of Copenhagen, Den-
mark, July 1985.

[7] IEEE. Standard for the Scheme programming language. Tech.
Rep. 1178-1990, Institute of Electrical and Electronic Engineers,
Inc., New York, 1991.

[8] JOHNSON, S. C. Yacc—yet another compiler compiler. Tech.
Rep. 32, AT&T Bell Laboratories, Murray Hill, NJ, 1975.

[9] JONES, N. D., GOMARD, C. K., AND SESTOFT, P. Partial Evalu-
ation and Automatic Program Generation. Prentice-Hall, 1993.

[10] JONES, N. D., SESTOFT, P., AND SØNDERGAARD, H. An exper-
iment in partial evaluation: The generation of a compiler gen-
erator. In Rewriting Techniques and Applications (Dijon, France,
1985), J.-P. Jouannaud, Ed., Springer-Verlag, pp. 124–140. LNCS
202.

[11] LEERMAKERS, R. The Functional Treatment of Parsing. Kluwer
Academic Publishers, Boston, 1993.

[12] MOSSIN, C. Partial evaluation of general parsers. In Proc. ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-Based
Program Manipulation PEPM ’93 (Copenhagen, Denmark, June
1993), D. Schmidt, Ed., ACM Press, pp. 13–21.

[13] PENNELLO, T. J. Very fast LR parsing. SIGPLAN Notices 21, 7
(1986), 145–151.

[14] RUF, E. Topics in Online Partial Evaluation. PhD thesis, Stan-
ford University, Stanford, CA 94305-4055, Mar. 1993. Technical
report CSL-TR-93-563.

[15] SPERBER, M. Attribute-directed functional LR parsing. Unpub-
lished manuscript, Oct. 1994.

[16] SPERBER, M. MØRK: a generator for preprocessors. Master’s
thesis, Universität Tübingen, Wilhelm-Schickard-Institut
für Informatik, Mar. 1994. Available via WWW from
http://www-pu.informatik.uni-tuebingen.de/~sperber/

mork.ps.gz.

[17] WEISE, D., CONYBEARE, R., RUF, E., AND SELIGMAN, S. Au-
tomatic online partial evaluation. In Proc. Functional Program-
ming Languages and Computer Architecture 1991 (Cambridge,
MA, 1991), J. Hughes, Ed., no. 523 in Lecture Notes in Com-
puter Science, Springer-Verlag, pp. 165–191.

