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Abstract translator from first-order tail-recursive Scheme into low-level C.
It is also possible to generate the back-end translator by the same
Two key steps in the compilation of strict functional languages are method from an interpreter, using a partial evaluator for C [2].
the conversion of higher-order functions to data structuchs ( Hence, partial evaluation offers the development of a Scheme com-
sureg and the transformation to tail-recursive style. We show how piler for the price of writing two interpreters. The automatic con-
to perform both steps at once by applying first-order offline partial version to tail form is also the first solution to Jones’s 1987 chal-
evaluation to a suitable interpreter. The resulting code is easy tolenge 11.5 [27].
transliterate to low-level C or native code. We have implemented The optimizing compiler performs aggressive constant propa-
the compilation to C; it yields a performance comparable to that of gation and higher-order removal; it is a specializer in its own right.
other modern Scheme-to-C compilers. In addition, we have inte- For its generation, we exploit two principles: thpecializer pro-
grated various optimizations such as constant propagation, higher-jections for the generation of the transformer, and thaguage
order removal, and arity raising simply by modifying the under- preservation propertyf offline partial evaluators for the transla-
lying interpreter. Purely first-order methods suffice to achieve the tion of higher-order programs into first-order tail-recursive code.
transformations. Our approach is an instance of semantics-directed We have generated the transformer from an interpreter using
compiler generation. the partial evaluator Unmix. Unmix, a descendant of the Moscow
specializer [36], dating back to 1990, treats only a first-order sub-
Keywords semantics-directed compiler generation, partial evalua- set of Scheme, and does not handle partially static data structures.
tion, compilation of higher-order functional languages Since our transformer performs a much more powerful specializa-
. o . ) tion on higher-order Scheme, and does handle partially static data

Partial evaluation is an automatic program transformation that stryctures, we have achieved a bootstrapping effect.
performs aggressive constant propagation [28, 18]. When applied  our work also refutes the 1991 claim of Consel and Danvy [17]
to an interpreter with respect to a constant (“static”) input pro- that realistic compiler generation by partial evaluation is only pos-
gram for the interpreter, partial evaluation performs compilation sjple through recent advances in partial evaluation technology. We
into the target language of the partial evaluator. Naive interpreters show that neither higher-order specialization nor partially static
subjected to offline partial evaluation usually produce straightfor- gata structures are vital to achieve realistic compilation. A sim-
ward compiled code. Moreover, if the input language of the inter- pie first-order partial evaluator suffices to do the job, even for a
preter, and the input and output languages of the partial eVa|Uat0rhigher-order subject language.
are identical—that is, if it is a self-interpreter—the compilation is
essentially the identity function.

However, if the interpreter uses only a subset of the subject lan-
guage, so do the compiled programs. In addition, after changing the
interpreter to propagate more information statically, the produced
compiler performs optimization. The generation of optimizing pro-
gram transformers by partial evaluation is called ithterpretive
approach[24]. It has been applied to a wide range of problems:
to the generation of optimizing specializers, supercompilers, an
deforesters [24, 25]—albeit in the context of first-order languages.

We show that the interpretive approach can achieve optimizing
compilation of a strict, higher-order functional language. Our com-
pilation system consists of two parts: an optimizing transformer,
which translates higher-order recursion equations into first-order
tail-recursive Scheme programs, generated automatically from a
suitable interpreter by partial evaluation, and a simple, hand-written 1  Examples

Overview We start with a small example for specialization and
translation into tail-recursive code in Sec. 1. Section 2 is a brief in-
troduction to partial evaluation. In Sec. 3 we explain the two basic
principles needed to generate stand-alone compilers by partial eval-
uation: thespecializer projectionsind thelanguage preservation
property. Section 4 shows how to turn a simple-minded recursive-
d descent interpreter into a two-level interpreter from which the par-
tial evaluator produces the optimizing compiler. In Sec. 5, we de-
scribe our approach to generating C code from the compiler output
by hand, followed by a recipe on how to achieve the same effect
by using partial evaluation again. Section 6 presents experimental
results, and Sec. 7 discusses related work.

Reprinted fromProceedings of the ACM SIGPLAN 1996 Conferefce Ve illustrate the transformations that our compiler performs by ap-
on Programming Language Design and Implementa(nDI 1996). plying them to a version of append written in continuation-passing
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(cps-append x y (lambda (x) x)))

(define (cps-append x y c)
(if (null? x)
(c y)
(cps-append (cdr x) y
(lambda (xy)
(c (cons (car x) xy))))))

The compiler converts the program to first-order tail-recursive
Scheme. It residualizes thembda appearing in the program, and

represents the resulting functions by closures. Closures consist of a

closure label identifying its originating expression, and the values
of their free variables. They are constructediaje-closure and
accessed bylosure-label andclosure-freeval The closure
label 10 denotes the identity4 the inner continuation. Whenever
the program applies a closure, it dispatches orcll@ure-1label
component. This happens for both applications of the continuation
c, once insl-eval-$3 for (c y) and once insli-eval-$9 for

the other application. Note that the identifier names in the residual

program have been replaced by generic names from the interpreter;

Namely, the counterparts to the original identifiers now have the
form cv-vals-zz.

(define (append x y)
(s1-eval-$3 (make-closure 10) y x))

(define (sl-eval-$3 cv-vals-$1 cv-vals-$2 cv-vals-$3)
(if (null? cv-vals-$3)
(if (equal? 10 (closure-label cv-vals-$1))
cv-vals-$2
(do-closure-cv-bindings-$2 cv-vals-$2 cv-vals-$1))
(s1l-eval-$3
(make-closure 24 cv-vals-$1 cv-vals-$3)
cv-vals-$2
(cdr cv-vals-$3))))

(define (do-closure-cv-bindings-$2 first-val closure)
(s1-eval-$9
(closure-freeval closure 1)
first-val
(closure-freeval closure 0)))

(define (sl-eval-$9 cv-vals-$1 cv-vals-$2 cv-vals-$3)
(if (equal? 10 (closure-label cv-vals-$3))
(cons (car cv-vals-$1) cv-vals-$2)
(do-closure-cv-bindings-$2
(cons (car cv-vals-$1) cv-vals-$2)
cv-vals-$3)))

When given a known first argumefifoo bar), the compiler
performs specialization:

(define (append-$1 y)
(cons ’foo (comns ’bar y)))

The next step in the compilation is the translation to C. We have
omitted actual output. Section 5 describes our C back end.

2 Partial Evaluation Issues

Partial evaluation is a specialization technique: If parts of the input
of asubject progranmare known at compile time, a partial evaluator
generates eesidual programspecialized with respect to the static
input. The residual program only takes the remainidgnamic

An offline partial evaluator consists oftanding-time analysis
and areducer The binding-time analysis, applied to the subject
program and the binding times of its arguments, annotates each
expression in the program with a binding time, static or dynamic.
The reducer processes the annotated program and the static part
of the input, reducing static expressions and rebuilding dynamic
ones, driven by the annotations. Whereas simple-minded binding-
time analyses only handle the binding times “completely static”
and “completely dynamic,” more sophisticated variants also treat
partially static data[33, 32, 9, 16].

In contrastonline partial evaluators [48, 38] are one-pass pro-
grams which decide “online” whether to reduce or rebuild an ex-
pression. They are generally more powerful than their offline coun-
terparts because they exploitinformation about actual values—rath-
er than only their binding times—to decide whether to reduce or
rebuild.

For our experiments, we use Unmix, a simple offline partial
evaluator for a first-order, purely functional subset of Scheme. Un-
mix employs classic Mix technology [29], and does not handle par-
tially static data. However, its post-processor performs arity rais-
ing [37] which is crucial to the generation of efficient residual pro-
grams in the absence of partially static data.

3 Prerequisites for Compiler Generation

The interpreters described here exploit two basic principles: The
specializer projectionspecify how to generate specializers from
interpreters, and thenguage-preservation propertf offline par-

tial evaluation is the basis for higher-order removal and conversion
to tail form.

The Specializer Projections Partial evaluation of interpreters
can perform compilation. The specification of @i#interpreterint
written in L is

Hint]][, Ps inp = [[Ps]]s mnp

where[_] . is the execution of af.-program,Ps is anS-program,
andinp is its input. AnL— L-partial evaluatope can compilePs

into an equivalent-programpP, such thaf P ] .inp = [Ps]sinp

as described by the firButamura projectiori21]:

P, = [[pe]]L intSd Ps.

The sd superscript tant means that the partial evaluator is to
treat the first argument dht as static, the second as dynamic.

Exploiting repeated self-application, the second and third Futa-
mura projections describe the generation of compilers and compiler
generators [28].

A generalization of the Futamura projections shows how to gen-
erate specializers, or constant-propagating optimizers frénoa
level interpreter[24, 25] 2int which accepts the input to the in-
terpreted program in two parts: one static and one dynamic. The
interpreter tries to perform each operation with the static part of the
input first; only if that fails, the dynamic part is consulted. Residual
programs result from the firspecializer projectiofi23, 25]:

Rr = [pe] 2int**? Pg nps
whereinp, is the static part of the input anfl;, is the special-

ized program. Analogous to the Futamura projections, stand-alone
specializers and specializer generators result result from the second

parts of the input as parameters, and produces the same results 28nd third specializer projection.

the subject program applied to the full input. Partial evaluation

We will introduce an ordinary one-level interpreter and then

can remove interpretive overhead and produce significant speed-Show how to extend it to two levels.

ups [28].



i compiler Futamura Projections V € Variable

P € ProcName

nt
. O € Operators
F K € Constants

E € Expression

2int specializer  Specializer Projections D e Definition
IT € Program
Figure 1: Generation of compilers and specializers E == V|K|(fEEE)|(OE")|(PE")]
(let (V E)) E) | (lambda (V) E) | (E E)
D := (define (P V™) E)
The Language Preservation Property Mix-style offline par- oI = Dt

tial evaluators have thlanguage preservation propertyhich is
obvious from inspecting their specialization phase [28].

Figure 2: Syntax
For any sublanguageé’ C L which includes allL’-

(let (V' Ev)) E2)]p
(lambda (V) E)]p
(E1 E2)]p

E[E2]plV — E[E1]p]
Ay E[E]p[V +— ]
(E[EL]P)(E[E2]p)

Pr = [pe] int*? Py = [compiler] Py

computable values as literals, and for any binding-time- { € Label
annotated.-programP every dynamic expression of Value = BaseValue + (Value — Value)
which belongstd’’, [pe] P = € L' holds for arbitrary p € Env = Variable — Value
staticx. 1 € ProcEnv = (ProcName + Label) — Expression
K[-] :  Constants — Value
Specialization of an interpreter can translate higher-order to O[] :  Operators — Value® — Value
first-order programs: Supposge is a partial evaluator for a sub- El] : Expression — Env — Value
setC of Scheme. The first-order languagein which the inter- EV]e =p[V]
preter is written hag” C C. Finally, the interpreter itself executes E[K]p K[K]
programs in the higher-order Scheme sulddetSee Fig. 1 for an EN(f Ex Ex Es)]p E[E]p — E[E:2]p | E[Es]p
illustration. Becausge preserves thé'-ness of the subject pro- E[(O E1...E)]p O[O](E[E1]p, - - -, E[En]p)
gram, the residual programs ENP Ey...En)]p E[v PV — E[E:]p]
&
&
&

—the compiled program—and

ssd Figure 3: A standard call-by-value interpreter

Rp = [pe] 2int**® Py inp = [specializer| Py inp

—the specialized program—are-programs. 42 Removing A

4 Deriving the Interpreter As the first step towards true compilation, we apply Reynolds’s de-
functionalization [35], and change the representation of functions
We start from a straightforward, environment-based interpreter and in the interpreter taclosuresconsisting of the label of the origi-
transform it step by step: natinglambda expression, and the values of its free variables (see
Fig. 4). freevarg¢) computes the list of the free variables of the
o By subjecting the interpreter to closure conversion, the gen- expression at in an arbitrary but fixed order.) Consequently, we

erated transformer performs closure conversion as well. now have a first-order interpreter for a higher-order language.
e Converting the interpreter to tail form leads to a transformer
into tail form. Closure = Label x Value*
e Next, adding constant propagation in static data turns the Value = BaseValue + Closure
transformer into an optimizer.
! plmiz &[(lambda’ (V) E)]p = let Vi ...V, = freevarg?)
e Finally, we introduce a generalization strategy to ensure ter- in (4, pVi...pVe)
mination. El(EL E2)]p =let  (Livi...vn) =E[E]p
(lambda (V) E) = ¥(¢)
i Vi...V, =freevarg/)
4.1 A Straightforward Interpreter in E[E][V — E[E-]p,
Figure 2 defines the syntax of the purely functional Scheme sub- Vi v, ... Vi vy

set treated by our interpreters. For the sake of simplicity, we have
restricted it tdambda abstractions of one argument.

Figure 3 shows a standard interpreter for the Scheme subset.
The meta-language is a call-by-value lambda calculus enriched with
constants, sums, and products. — E; | E» denotes the Mc-
Carthy conditional. The notatiovialue™ — Value is a shorthand
for the sum of() — Value, Value — Value, Value x Value —
Value etc. We have omitted the injections and case analysis for
elements oValue. We assume that each expression is uniquely la-
beled by ar? € Label. Where necessary, we indicate the label by
a superscripty serves for both function and label lookup.

Figure 4: Changes to interpreter after closure conversion

The interpreter shown in Fig. 4 does not specialize effectively
yet. On closure application, the labélis dynamic. Hence, the
lambda expression in the program text would normally be dy-
namic as well which would lead to unwanted interpretive overhead
in the specialized code. Instead, the actual interpreter employs a
binding-time improvemerib make the expression argument static
again—called “The Trick” [28]: On closure application, the inter-
preter loops over alambda expressions that could have generated



the closure to be applied, comparing each one Wihccessively. S*[_] evaluates a simple expression to a value description. The

When the interpreter finds thembda belonging to¢, it continues constructorcons andlambda evaluate to the correspond-
interpretation with the now static expression. The interpreter em- ing descriptions. For selector and primitive applications, the
ploys a simple equational flow analysis [11] to restrict the set of interpreter first examines if it can reduce them statically—for
lambdas which it needs to test. The residual code then performs a example, whertar is applied to acons description. If that
sequential dispatch on closure application. is not possible, the interpreter generates a new configuration

variable and maps it to the dynamic result of the expression.
4.3 Converting to Tail Form Therefore,S*[_] returns a new configuation variable envi-

ronment along with the value description. Again, all non-tail
In the next step we convert the interpreter to tail-recursive style. calls in the definition are statically unfoldable.

Again, by changing the interpreter, the generated compiler per-
forms the corresponding transformation. In a higher-order setting,
we would transform the interpreter into CPS [35, 20, 4]. CPS
makes control flow explicit by encoding the current evaluation con-
text as a function. As we only have first-order methods at our dis-
posal, we encode evaluation contexts in the same way as functions:p[_] evaluates an arbitrary value description to a value.
by closures. Thus, we encode the current evaluation context di-

Note that a simple expression is static if all its free variables
refer to static value descriptions (those that do not cortain
components). For static simple expressiafis]_] always
produces a static value.

rectly as a function, avoiding an explicit CPS transformation. E°[_] is the main evaluation function. It is analogous to &H¢_]
function in the simple tail-recursive interpreter in Fig. 6. The
_ ; * main difference is in the handling @ The interpreter tries
E T SE|(tSE B *E) | (P SE) | (SE ) to determine the conditional statically first. Only if that fails,
SE == V|K|(OSE")| (lambda (V) E) et h o > -
it introduces a residual conditional. Our implementation can

) actually infer a statid more often than the interpreter shown
Figure 5: Desugared syntax in Fig. 6, for example omull? tests oncons descriptions

. . . with dynamic components.
In our interpreter, a desugaring phase reduces the number of dif-

ferent evaluation contexts to one—the application of a closure. In C® handles context application, analogousCtin Fig. 6. C°

non-tail positions we only allowimple expressionghich evaluate also needs to distinguish between static and dynamic con-
directly to values—constants, variables, applications of primitives, texts. For static contexts, it is trivial to prepare a suitable
and lambda abstractions. Figure 5 shows the simplified syntax. environment and continue evaluation. For dynamic contexts,
In the specificationSFE is for simple expressions. The desugar- the interpreter needs to introduce new configuration variables
ing phase simply moves the non-tail expressions into parameters for their (dynamic) free variables.
to lambda abstractions. Thus, the expressiffy z)) becomes
((lambda(r)(f r))(g x)). In addition, the desugarer repladets The interpreter presented here is not yet suitable for successful
by equivalent applications ddmbda abstractions. offline partial evaluation. Some standard binding-time improve-
The tail-recursive interpreter is shown in Fig. 6. evaluates ments [28] are necessary to ensure {hand~ as well as the ex-
simple expressions™ evaluates “serious” expressiors: has an pression to be evaluated stay static. For instance, the interpreter
additional argument, a context stack, which keeps track of pend- also performs “The Trick” on the application of a dynamic context,
ing context closures. Whefi* reaches a simple expressistE, just as the interpreter shown in Fig. 4.

it evaluatesSE via S, and passes the result@owhich processes
the stack of pending contexts. applies the closure on top. Ifthe 4.5 Addressing Non-Termination Woes
context stack is empty;’s argument is the final result of the inter-
pretation. The two-level interpreter exhibited in the last section is first-order,
S need not be tail-recursive: All calls ®are statically unfold-  tail-recursive, and performs constant propagation. However, partial
able, and consequently never perform function calls. Hence, par- €valuation with respect to a static input program does not terminate
tially evaluating the interpreter in Fig. 6 yields tail-recursive resid- for non-tail-recursive input programs: Mix-style partial evaluators
ual programs. such as Unmix do not detect and properly handle static data struc-
tures that grow without bounds under dynamic control. Our inter-
4.4 Propagating Constants preter propagates such data in three places:
Now we turn the transformer into an optimizer to first-order tail- 1. The stack of evaluation contexts may contain a context that
recursive code. We split the environmeninto a static and a dy- leads to its own repeated evaluation.
namic part, converting the interpreter into a two-level interpreter
and making it amenable to the specializer projections. To support
partially static data structures, we change associate names with
completely statiovalue descriptiongnstead of dynamic values. A
value description may represent an arbitrary partially static data ob-
ject:
desc ::= quote(K) | cons(descdesq | clos(¢,des¢) | cv(i) _Exactly th_ese CondiFiO_nS_ lead to self_—z_embedding data structures
which potentially grow infinitely. The critical data structures must
A value description can be a completely static atomic value be generalized(coerced to dynamic values) which removes their
(quote), a pair of value descriptiongéns), a partially static clo- static value from the view of the partial evaluator. For closures and
sure €los), or aconfiguration variablg24, 47, 45] whose value  data structures, generalization is straightforward: The interpreter
is stored in a separate environment fresh(o) yields an unused replaces the offending value descriptions by frestdescriptions,
configuration variable. and adds the generalized valuestdlo handle dynamic evaluation
Figure 7 shows the two-level interpreter with the following func- contexts, we must split the context stack into a static part and a
tions:

2. A closure may contain a closure generated from the same
lambda expression as part of the value of one of its free vari-
ables.

3. Applications ofcons may nest.



v € Context = Closure*

S[-] :  SimpleExpression — Env — Value
E* :  Expression — Env — Context — Value
C :  Value — Context — Value

S[V]p = pV

SIK]p = K[K]

S[(O SE: ... SE,)]p
S[(lambda’ (V) E)]p

O[O](S[SE1lp, .., S[SEn]p)
letVi...V, =freevarg?) in (¢, pVi...pVs)

E*[SE]py = C(S[SE]p)y

E[(if SE Ev E2)]py S[SE]p — E*[Erlpy | £ [E2]py

E*[(P SEs ... SEW)]py E [W(P)][Vi — S[SEilp, ..., Va — S[SE.]ply
E*I(SE E)]py E'[Elp(S[SE]p :v)

Co((l,v1...vn) ") let (lambda (V) E) P (L)

Vi...Va freevarg/()
iNnE[EJV — v, Vi —v1,..., Vo = vy
v

Cv[]

Figure 6: Tail-recursive interpreter

dynamic part, and use the dynamic stack for critical contexts that eration to C. The translation of &b program to C yields a single

may cause non-termination. function program. Procedure headers are translated into labels,
We have implemented an online strategy and an offline analysis hence (tail-recursive) function calls turn out todxetos.
for generalization: Parameters are passed in a fixed nhumber of variables local to

) o ] ) program, but global to all procedures. On entry to a procedure,
Online Generalization Self-embedding data can only grow with- 3 new C scope is opened which declares the procedure’s private
out bounds inside of the branches of dynamic conditionals parameter variables. Then the relevant global parameter variables
E_lnd through bOdIeS Of .dynammnbdas [10] Unde.r the on- ) are Copied into the private variables.
line strategy [46], our interpreter delays generalization until Since procedure calls’ arguments are simple expressions, there
it encounters a dynamic conditional. In that case, the inter- are no nested procedure callsSn. Therefore the arguments of a
preter scanp and-y for critical data structures and closures,  call can be evaluated without referring to the global parameter vari-
and generalizes them as described above. Evaluation contin-aples. Thus the construction of an argument list is straightforward:
ues using dynamic evaluation contexts. generate code to evaluate the simple argument expressions and as-
sign the result to the respective global parameter variables. Finally,
control is transferred to the next procedure kgoao.
The translation of simple expressiof# is an assignment of
its value to a new temporary variable. Temporary variables are also
local variables oprogram, but global to all procedures. Each tem-
porary variable is defined and used exactly once. We rely on the
C compiler’s register allocator to merge variables (global param-
The online strategy is less conservative since it generalizes only €ter variables, procedure argument variables, and temporaries) if
under dynamic conditionals. It necessarily generalizes less andtheir life ranges are disjoint. The evaluation is sequentialized us-
propagates more static information. However, the online approaching C’s sequential evaluation operattexpr, expr). Thus the
delays the generalization too long: The interpreter can only detect esult of the translation is a C expression. All other expresstons
self-embedding when it has already occurred. Consequently, theare translated into C statements. For a simple expressiemarn
respective code is already part of the residual program. Thus, thestatement is generated which terminates the executipfogfram.
underlying data structures and loops are unrolled at least once be- ~ The most important interface between the tail-recursive inter-
fore generalization happens, leading to redundant code. This is aPreter and the translation to C is the closure representation. The
well-known problem in online partial evaluation [38]. interpreter treats closures as an abstract datatype with operations
make-closure, closure-label, andclosure-freeval with the
obvious interpretations. These operations are propagated to resid-
ual programs. The translator to C is free to choose an efficient
implementation for closures. The current implementation uses a
flat vector representation. Note that the C code also performs a se-
uential dispatch on closure applications exactly like the Scheme
nput programs. It might be desirable to perform closure applica-
jon by an indirecigoto statement as allowed by GCC [41]. How-
ever, since sequential dispatch is inherent in our approach, it would
seem difficult to achieve this by straightforward means.

Offline Generalization Analysis An alternative approach uses a
flow analysis [40, 8] to determine statically whitdmbdas
and whichcons expressions may lead to critical data in the
interpreter. The corresponding descriptions are generalized
on creation. As for critical evaluation contexts, they are mere-
ly closures already caught by the analysis.

5 Compilationto C

We describe two ways to achieve compilation to the C language.
The first one describes a very simple translation implemented by
hand. It has been implemented and used to obtain the experimenta
data presented below. The second one presents a more speculq
tive approach which again employs partial evaluation to obtain a
C program from our Scheme subset. It has not been carried out in

practice. We represent Scheme data objects by @non, and we em-
ploy the Boehm garbage collector for C [6]. There is no coopera-
5.1 By Hand tion between the translation and the garbage collector.

The output languag§, of the partial evaluation process is a tail-
recursive first-order subset of Scheme which has a simple translit-



p€ Env = Variable — ValDesc
o€ CVEnv = ConfigVariable — Value
v € Context = ValDesc”
S*[-] :  SimpleExpression — Env — CVEnv — (ValDesc x CVEnv)
D[] :  ValDesc — CVEnv — Value
& : Expression — CVEnv — Context — Value
¢ _ : ValDesc — CVEnv — Context — Value
S*[V]po = (pV,0)
S*[Klpo = (quote(K), o)
S*[(cons SE1 SEs)]po = let (desg,o1) = S*[SE1]po
(dESQ,Ug) = S*[[SEQ]]pO'l
in (cons(desg, desg), o2)
S*[(car SE)]pc = let(desgo’) = S*[SE]po

in (desc= cons(desq, desg))
— (desg, o)
| leti =fresh(o)in (cv(i),oli — Ofcar](D[desdo’)])
analogous
letVi...V, =freevarg?) in clos(¢, pVi ... pVy)
(SE: ...SE, stati¢
—  (quote(O[O](D[desg]o,...,D[desg]o)), o)
| leti = fresh(o)
in (cv(i),o[i — O[O](D[desg]o, ..., D[desg]o)])
K[K]
O[cons](D[desg]o, D[dese]o)
(¢, D]desg]o ... D[desg,]o)

o(1)

S*[(cdr SE)]po
S*[(lambda’ (V) E)]po
S*[(O Ey ... Ey)]po

Dlquote(K)]o
D(cons(desg, dese)]o
Dlclos(¢,desg ...desg)]o
Dlcv(i)]o

E[SE]poy
E°(if SE E1 Ex)]pory

let (desgo’) = S*[SE]po in C® desco’~y
Iet (desgo’) = S*[SE]|po
n (SE statio
— (desc= quote(false)) — E°[E:]poy | E°[Er]poy
| (Dldesdo’) — £°[Bilpor | £°[Ezlpo
E°(P SE: ... SEy)]poy = let (desg,01) = S*[SEi]pc

(desG,,on) - S*[SEn]pon-1
in E°J¢(P)][Vi — desa, ..., V, — desG]ony
let (desGo’) = S*[SE]poy in E°[E]po’ (desc: v)

E°I(SE E)]pory

C° desco(c:v') = (c=clos({,desg ...desg,))
— let (lambda (V) E) = ¥(¢)
Vi...Vh = freevarg/)
in EC[EN[V — dech1 — desg, ..., V, — desg]oy’
| let (Lyv1...vp) Dic]o
(lambda (V) E) = ()
Vi...Vn = freevargl)
i1 = fresh(o)
desG = cv(i1)
o1 = o1 vi]
in = freshon_1)
desc; = cv(in)

On— I[Zn — vn]
in EC[E][V — dech1 — desg, ..., V, — desg]o,y'
C® desco|] = DJ]desdc

Figure 7: Two-level interpreter

5.2 By Partial Evaluation higher-order to first-order interpreter which has been developed in
Section 4, andnt-c, a hypothetical interpreter for first-order tail-
recursive Scheme written in C. Our tools are the compiler generator
cogen derived by self-application from the Unmix specializer and
the compiler generatat-mix [2]. Let [ ]s denote execution of

The recent advent of C specializers [1, 2] facilitates a development
which culminates in a complete compiler written entirely in C. As
ingredients we only have to provide two interpreteirst-s, the



Scheme programs arfd ¢ execution of C programs.
First, we apply
gen-s = [cogen]s int-s

to obtain a program generator which turns higher-order Scheme
programs into first-order tail-recursive Schefie
Next, we applygen-s to itself,

gen-s-ft = [gen-s]s gen-s,

and obtain the higher-order #6 program generator, but now writ-
teninF!

Now we start on the C end of the translation. Ar~C com-
piler (written in C) is the result of an application@©fmix to int-c:

gen-c = [C-mix]c int-c.
We can now translatgen-s-£ft to C by using the compiler just
constructed:
gen-s-ft-c = [gen-c]c gen-s-ft.
It remains to compose the progragen-c andgen-s-ft-c to
obtain a full Scheme to C compiler written in C:
scheme->c = gen-c o gen-s-ft-c

Performing the composition merely consists in merging the print
routine ofgen-c with the parser ogen-s-ft-c.

In essence, we have seen that a Scheme-to-C compiler (written
in C) can be generated by partial evaluation for the price of writing
two interpretersint-s andint-c:

scheme->c = int-s + int-c + partial evaluation.

The ideas presented in this section have not been realized in prac
tice, due to the fact that no C specializer is publicly available as of
yet.

6 Experimental Results

We | Hobbit
deriv 2420 390
tak 5820 810
cpstak 6400 | 6490
takl 220 870
fibclos 15820 | 19480
cps-append | 5480 | 36340
queens 8110| 2370

Figure 8: Benchmarks (timings in milliseconds)

7 Related Work

Turchin [47] shows that the interpretive approach can perform pow-
erful transformations. Gick and Jgrgensen [24, 25] use the in-
terpretive approach to generate a deforester and a supercompiler.
However, they only deal with first-order languages. Past attempts
at compilers for higher-order languages by partial evaluation have
produced higher-order target code because they are written in high-
er-order languages. Bondorf [7] studies the automatic generation
of a compiler for a lazy higher-order functional language from an
interpreter. Jgrgensen shows that optimizing compilers for real-
istic functional languages can be generated by rewriting an inter-
preter [30, 31]. Consel and Danvy [17] use partial evaluation to
compile Algol to tail-recursive Scheme. However, they attribute
their success to sophisticated features of the partial evaluator they
use, Schism, such as partially static data structures and higher-order
functions. Burke and Consel [12] translate Scheme into low-level
stack-machine code by multiple interpretive passes, starting from a

denotational semantics for Scheme. However, they also make ex-
tensive use of higher-order features of the partial evaluator.

The first mention of higher-order removal or defunctionaliza-
tion appears in work of Reynolds [35]. Compilers for functional
languages [42, 4, 3, 20] usually achieve closure conversion with a
direct non-optimizing transformation algorithm, and employ CPS

We have run some preliminary benchmarks which indicate that the conversion to transform programs into tail form. Chin and Dar-
performance of our approach is comparable to other Scheme com-ington [13, 14] give a higher-order removal algorithm for lazy
pilers which generate C code. Our benchmarks are a program com-functional languages. However, the resulting program may still

puting derivativesieriv from the Gabriel benchmark suite [22],
the Takeuchi functiortak, a CPS version of itpstak, a ver-
sion of it using lists instead of integetakl (also taken from the
Gabiriel suite) a version of the Fibonacci function involving clo-
suresfibclos, a suite of calls tocps-append, and a program
solving the 10-queens probleqmeens. Figure 8 shows the timings

of the benchmarks as compared with Hobbit 4d [43], an optimiz-
ing compiler which produces code for the scm runtime, used with
maximum optimization and fixnum arithmetic. Our versions of the
benchmarks were all run using the offline generalization strategy.
The tests were run on an IBM PowerPC/250.

The fibclos and cps-append benchmarks indicate that our
approach deals especially well with higher-order code. For the first-
order code intak, deriv, andqueens, our approach introduces
evaluation contexts and thus closures whereas Hobbit can use th

whatsoever on tuning either the resulting first-order Scheme code,
or the translation to C. We believe that further optimizations will
result in an additional substantial performance increase. Also, us-
ing the online generalization strategy, thestak benchmark ran
roughly 3 times faster.

Our compiler produces quite compact stand-alone executables
The complete benchmark suite yields a binary well under 200 Kilo-
bytes—including the Boehm collector.

The programs associated with the optimizing compiler to tail-
recursive Scheme take up less than 70 Kilobytes. The compiler to
C takes up a mere 10 Kilobytes.

]

native C stack to some advantage. Note that we have spent no effor

be higher-order—the algorithm does not perform closure conver-
sion. The compilation of higher-order languages via a C compiler
has been used successfully in several projects, such as smi2c [44],
Hobbit [43], Bigloo [39], and the Glasgow Haskell Compiler [34].

In particular, sml2c also translates tail-recursive intermediate code
obtained from a CPS transformation, but uses a function dispatcher
for handling control.

8 Conclusion

We have used the interpretive approach to generate the middle end
of a compiler for a strict, higher-order functional language from
an interpreter. We achieve closure conversion and conversion to
tail form by applying the respective transformations on a straight-
orward interpreter manually. Offline partial evaluation turns the
nterpreter into an automatic transformer by virtue of the language
preservation property. Adding constant propagation in static data to
our interpreter then turns the simple transformer into an optimizer
and specializer thanks to the specializer projections. The transla-
tion also makes optimizations present in the partial evaluator such
as post-unfolding and arity raising accessible to the optimizied pro-
grams. In addition, we have presented a translator of the resulting
code into low-level C.

We have formulated the language preservation property, and put
it to use for the optimizing compilation of a higher-order language
into C with little conceptual effort. We consider this a successful



bootstrapping process. Our results prove that partial evaluation is a[17]
practical approach to the generation of optimizing compilers.
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