
Experience Report:
Growing Programming Languages for Beginning Students

Marcus Crestani
University of Tübingen

crestani@informatik.uni-tuebingen.de

Michael Sperber
DeinProgramm

sperber@deinprogramm.de

Abstract
A student learning how to program learns best when the program-
ming language and programming environment cater to her specific
needs. These needs are different from the requirements of a profes-
sional programmer. Consequently, the design of teaching languages
poses challenges different from the design of “professional” lan-
guages. Using a functional language by itself gives advantages over
more popular, professional languages, but fully exploiting these ad-
vantages requires careful adaptation to the needs of the students—
as-is, these languages do not support the students nearly aswell as
they could. This paper describes our experience adopting the didac-
tic approach ofHow to Design Programs, focussing on the design
process for our own set of teaching languages. We have observed
students as they try to program as part of our introductory course,
and used these observations to significantly improve the design of
these languages. This paper describes the changes we have made,
and the journey we took to get there.

Categories and Subject Descriptors D.2.10 [Software Engineer-
ing]: Design—Methodologies; K.3.2 [Computers and Education]:
Computer and Information Science Education—Computer Science
Education

General Terms Design, Languages

Keywords Introductory Programming

1. Introduction
Functional programmers know that the choice of language affects
the thinking of programmers and thus the design of software.The
choice of language also matters when it comes to teaching intro-
ductory programming: It profoundly affects the students’ thinking
repertory, as well as their learning experience. An “off therack”
language poses significant challenges for beginners and tends to be
an obstacle to learning (Felleisen et al. 2004; Findler et al. 2002).

In 1999, the University of Tübingen started revising its intro-
ductory course: A functional-programming-based course replaced
more traditional previous offerings using Pascal, C++, or Java.
The course was, to a large degree, based on the classicStruc-
ture and Interpretation of Computer Programs (or SICP) (Abel-
son et al. 1996). We were aware at the time of Rice PLT’s efforts,
led by Matthias Felleisen, that would result inHow to Design Pro-
grams (or HtDP) (Felleisen et al. 2001), which, however, had not
been published yet—consequently, we only had a vague idea ofits

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’10, September 27–29, 2010, Baltimore, Maryland, USA.
Copyright c© 2010 ACM 978-1-60558-794-3/10/09. . . $10.00

central tenets. We used PLT’s DrScheme (now called DrRacket) for
the course, seeing it mainly as a graphical IDE for Scheme, and thus
easier to use for students than traditional Scheme systems.Specif-
ically, we ignored its hierarchy of language levels and instead ran
DrScheme in its R5RS mode. Our underlying assumption was the
same as that of SICP, namely that the sheer power of functional
programming combined with the syntactic simplicity of Scheme
would make both teaching and learning so easy that we would fix
all the problems of the previous courses instantly. However, while
Scheme fixed many problems, significant issues remained.1

After having written a textbook on this approach, it took us until
2004 to realize that SICP’s example-driven approach to teaching
did not work as well as we had expected with a large portion
of our students: SICP admirably explains how many concepts of
software development—abstraction in particular—work, but this is
not enough to enable students to solve problems on their own.By
this time, HtDP had appeared, and we started to adopt its central
didactic concept, thedesign recipes, which implement an explicit
programming process, driven by a data analysis.

Adopting the design recipes meant expressing their concepts in
code. However, pure R5RS Scheme is a poor match for the de-
sign recipes—it lacks native constructs for compound data,mixed
data (“sum types”), and noting violations. Consequently, we started
implementing our own “language level,” which included the miss-
ing features and allowed us to adopt HtDP’s design recipes, while
staying close to “standard” Scheme. We still shunned HtDP’sown
language levels, as they deviate significantly from R5RS Scheme.
However, even though we did not know it at the time, we had repli-
cated the first step of PLT’s own journey towards the languagelev-
els, and we would replicate more.

For reasons initially unrelated to the language, we startedob-
serving our students as they worked on exercises (Bieniusa et al.
2008). Soon, we saw that, despite Scheme’s simplicity, students
were making syntactic and other trivial mistakes. Experienced pro-
grammers “see” these mistakes immediately, but students often do
not. This can be immensely frustrating, and a significant number
of students gave up on programming on their own as a result. Dis-
turbingly, many of these mistakes could have been detected by the
Scheme implementation if only the language and the error mes-
sages were restricted to what the students knew. Consequently, we
started implementing restrictions in line with the course,and cus-
tom error messages—replicating another step of PLT’s experience.

Moreover, we saw that some students would read ahead and
make use of programming-language features not yet covered in the
course (most popular: assignments), which destroyed important di-
dactic points: Thus, we implemented a sequence of progressively
bigger language levels, replicating and thus confirming thefinal es-
sential step of PLT’s development of the HtDP language levels. In
2006, after adding more add-on features analogous to HtDP’s, such
as the handling of images and functional animations, we had lan-

1 We were wrong about the course on other aspects as well (Bieniusa et al.
2008).

guage levels almost completely analogous to HtDP’s. We alsopub-
lished our own follow-up textbook,Die Macht der Abstraktion (or
DMdA, German forThe Force of Abstraction) (Klaeren and Sperber
2007). In retrospect, we could have gotten there much fasterand
cheaper. However, at the time, we did not have PLT’s experience
and the rationale for their design, and thus had proudly assumed a
“not-invented-here” stance.

Nevertheless, the design process for our teaching languages
did not end there: The HtDP language levels still had insufficient
support for some aspects of the design recipes—in particular, test
cases, mixed data, and contracts. Moreover, new desirable aspects
of teaching languages emerged—most recently, the support for for-
mal properties of programs. This paper documents our experience
with adopting the HtDP approach and evolving our teaching lan-
guages to better meet the students’ needs.

2. HtDP’s Language Levels
The HtDP (and DMdA) languages have evolved from Scheme,
which, at the time, had been the basis for many introductory text-
books and courses, as its small size make it attractive for class-
room use, and beginning students take well to the simple Lisp-style
parenthesized prefix syntax. However, standard Scheme doesnot
solve all language problems of the introductory course. Thus, im-
proving the students’ experience meant changing and improving
the language, as PLT’s TeachScheme! project has been doing since
1995 (Felleisen et al. 2004; Findler et al. 2002).

In particular, students make mistakes when writing code. If
the student is to make independent progress, the programming
environment must provide feedback that enables the studentto fix
the mistakes on her own. These mistakes are often trivial: Syntax
errors (which occur even with the “trivial” Scheme syntax) and type
errors can be detected by the programming environment. Helping
students fix other kinds of mistakes—misunderstanding the syntax
or using features not yet covered in class—require actual changes
to the languages beginners program in.

In DrScheme, at any given time, the beginner uses one of sev-
eral language levels. A language level is an operation mode of
DrScheme that provides a language subset tailored to the needs of
the beginner at that time. As the student progresses, she switches to
more advanced language levels, each of which is a superset ofthe
previous level. Each language level has its own implementation of
error reporting tailored to the beginner’s needs. The errormessages
only mention terms that the course has introduced up to that point.

3. Popularity 6= Success
Adopting HtDP’s insights for what would become DMdA was a
lengthy process: Prior to the 2004 course, we only had a vague
idea what the students were doing when they were on their own.
That did not keep us frombelieving we had a fairly good idea of
what they were doing, namely solving their homework problems
using the techniques we had taught them. Only when we started
personally supervising lab exercises, we found out that thestudents
did not always follow the path we had laid out for them, and
encountered numerous difficulties. This was easy to addressduring
personal supervision, but would have kept the students fromsolving
homework problems when on their own. In fact, many students
resorted to copying somebody else’s homework (Bieniusa et al.
2008), and our impressions of what the students were doing turned
out to be quite wrong, even though we thought we had good reason
to believe they were right: The course was popular with students,
and passing rates were higher than with the previous, “traditional”
courses, even though we had covered more difficult material.

When we realized this, we started observing our students more
closely. Specifically, we recorded the mistakes they made, the error

messages from DrScheme that reported the mistakes, and the stu-
dents’ reaction to the error messages. The authors did this person-
ally, and additionally trained our student TAs to look for mistakes,
and report their observations to us. We also tried to raise the stu-
dents’ awareness of these issues and report them. However, most
of the helpful observations we made ourselves, closely followed by
the TAs reports—we received very little unsolicited feedback from
the students, and even this was mostly ad-hoc in-class feedback.

The following insights from our experience have stayed withus:

• We did not even know we had a problem, even though we have
always maintained an open door and open ears for our students.
Consequently, it was extremely easy to deceive ourselves that
“everything was fine.”

• Mistakes made by one student were often repeated by other
students.

• What seems easy or natural to us does not necessarily appear
that way to the students.

• We could not expect the students to give us, on their own
initiative, the specific feedback we need to improve the course
and the software for the course.

The design decisions documented in this paper were mostly direct
consequences of this action research, which is ongoing. Student’s
scores in the programming exercises of the final exams have con-
tinually risen since we have adopted design recipes and started im-
proving our teaching languages.

4. Simple Differences
The original DMdA languages of 2006 differed from the HtDP
languages in several minor ways—partly to reduce the differences
with standard Scheme, and partly to cater more specifically to our
German audience. The HtDP languages generally appeal to the
students’ prior training in algebra, sacrificing some of theoriginal
Scheme syntax, whereas the DMdA languages stay closer to the
original Scheme. The differences illustrate some of the decisions
designers of languages for beginners face.

4.1 Procedure/Function Definitions

The difference in the handling of algebra is most visible in proce-
dure definitions: In HtDP, procedures (called “functions” there) are
defined with the usual Scheme syntactic sugar:

(define (f x)
...)

This emphasizes the similarity to function definitions in mathemat-
ics as well as the visual congruence between function definitions
and calls, and makes it easy to “see” the substitution that occurs.
Conversely, DMdA’s procedure definitions use an explicitlambda:

(define f
(lambda (x)

...))

This makes it easier later to introduce higher-order procedures, as it
is straightforward to move thelambda somewhere else as opposed
to explaining the concept of syntactic sugar, but loses the visual
congruence. This is no great loss, however, as German students
typically cannot identify the mathematical substitution principle,
anyway—the subject does not play the explicit role in Germanhigh
school that it enjoys in US curricula.2 Explaining it from scratch
with lambda is thus no more difficult than explaining it using the
syntactic sugar.

2 Ironically, Felleisen traces back the algebraic aspect to his training in
German high school, where algebra sadly has since been de-emphasized.

4.2 Record Definitions

An important part of HtDP and DMdA is the treatment ofcom-
pound data. Instructors teach students to recognize compound data,
and use record definitions as implementations of the resulting data
definitions. Teaching compound data effectively is surprisingly dif-
ficult, as beginning students tend to get confused about the idea of
“several things becoming one.” Both DMdA and HtDP instructors
teach simple heuristics such as that the number of components in
the data definition should match the number of fields. (“How many
parts does a calendar date have? Three! How many fields does the
record-type definition for calendar dates have? Three!”) This means
that the programming aspects of compound data ought to be as sim-
ple as possible, to not add to the students’ burden.

Scheme has a long history of “record wars” (Clinger et al.
2005), hence it is no surprise that DMdA and HtDP chose different
syntaxes for their record-type-definition forms. HtDP has chosen a
so-called “implicit-naming” form. For example, consider the fol-
lowing HtDP “struct definition”:

(define-struct ant (weight loc))

This is in fact a definition of four procedures: A record constructor
calledmake-ant, a predicateant?, and two selectorsant-weight
andant-loc. The names are not explicitly mentioned in the form,
hence “implicit-naming.”

The DMdA teaching languages provide an “explicit-naming”
form. Here is a definition equivalent to the above:

(define-record-procedures ant
make-ant ant?
(ant-weight ant-loc))

This is more verbose than the HtDP form, but makes it easier
for the students to see that the form defines identifiers, and what
those identifiers are. Also,define-record-procedures allows
choosing arbitrary names for the various procedures, even though
we emphasize the value of the conventions used above. Moreover,
the DrScheme “Rename” menu entry works with explicit naming
form, but not with the implicit naming.

Some instructors in Germany experimenting with the HtDP lan-
guages reported that a significant number of students had diffi-
culty understanding the “magic” of implicit naming. This partic-
ular problem is not as significant in DMdA courses; signatures (see
Section 5.2) further alleviate any problems the students may have
with writing record-type definitions.

4.3 Print Format

The REPL of a typical Scheme implementation accepts an expres-
sion and then prints its value. While the output format of thevalue
is not standardized, most Scheme implementations output the (stan-
dard) external representation of the value: 5 prints as5, “true”
prints as#t, and the list with elements 1, 2, and 3 prints as(1
2 3). While the use of the external representation has advantages
for dealing with advanced features of Scheme such as representing
program source code as data,eval andquote, it confuses many
beginning students about the difference between expressions and
values. For example, the expression(list ’+ 1 2) evaluates to
(+ 1 2), which looks like an expression that evaluates to 3.

HtDP and DMdA avoid this confusion by using output formats
different from the external representation. As HtDP emphasizes the
relationship between algebra and programming, it prints out each
value as a canonical form that evaluates to it. Thus, the listwith
elements 1, 2, 3 prints as(cons 1 (cons 2 (cons 3 empty)))
or (list 1 2 3) (depending on the language level), which, as an
expression, again evaluates to a list with elements 1, 2, 3. Record
values are printed as constructor calls—for example, an antwill
print out as(make-ant w (make-posn x y)).

With DMdA, we instead chose to emphasize the distinction
between the expression(make-posn 1 2) and its value. This
is particularly relevant in DrScheme’s stepper (Findler etal.
2002), which displays intermediate reductions as expression. In
DMdA, the list prints as#<list 1 2 3>, and the ant prints as
#<record:ant w #<record:posn x y>>. This has the tech-
nical disadvantage of not being usable as an expression, butalso
prevents certain abstraction violations: In particular, it prevents
students from cutting and pasting the result directly into atest case.

Both approaches have been successful at avoiding the confusion
associated with the standard external representation.

4.4 Minor Language Changes

We made additional minor changes over the HtDP languages. One
example is the omission of symbols in favor of strings: HtDP (and
an ordinary Scheme programmer) uses symbols for enumerations
(’solid, ’liquid, ’gaseous) where DMdA uses strings. This
avoids the notational difficulties of using symbols, in particular
the syntactic restrictions (no spaces etc.), and also the notational
confluence between symbols and variables. We had observed these
problems in earlier incarnations of the course, and switching to
strings solved them all. (One might argue that this is less efficient,
but it is the introductory course, after all.)

Delaying symbols enables DMdA to also relegatequote (in-
cluding quoted lists) to the very end, the general notion of which
was quite confusing to students when introduced earlier. The
inconvenience—(list "solid" "liquid" "gaseous") instead
of ’(solid liquid gaseous)—is well worth it.

5. Growing the Teaching Languages
In 2006, when the DMdA teaching languages had become roughly
analogous to the HtDP languages, we could focus on further im-
provements. In particular, we adopted and improved upon newer
developments in the HtDP languages such as the support for testing.
We have also developed two new additions: support for signatures,
and the formulation of general, checked properties of procedures.

5.1 Encouraging Testing

Writing test cases is an early step of the design recipes. In particu-
lar, students should write test cases before they write the procedure
definition itself.

When we originally introduced testing as a mandatory part of
the design recipes, we adopted graphical test boxes, which HtDP
had implemented previously, that the students had to insertvia a
menu and fill out like a form. A test box would contain “Test” and
“Should be” fields, that would be tested for equality. DrScheme
would decorate test boxes of successful tests with green marks and
failed tests with red marks and the actual value. The idea wasthat
the graphical and form-like approach would make testing more
attractive to students, but in fact the opposite was the case: The
students found the GUI manipulation required to use test boxes
too cumbersome. Moreover, the test boxes had to comeafter the
procedure definition of the procedure they were supposed to test
even though the design recipes specify that the students write them
before writing the procedure definition. As a result, many students
wrote their test cases after completing the procedure body.

To encourage the students to test more, we replaced the mech-
anism for writing tests by one HtDP had implemented earlier:In-
stead of graphical test boxes, test cases are formulated as plain code
using thecheck-expect form that accepts a test expression and a
should-be expression as operands. The test case foris-5? can be
formulated as acheck-expect form like this:

(check-expect (is-5? 7) #f)

When we replaced graphical test boxes bycheck-expect, the
students wrote significantly more test cases. Thecheck-expect
form allows quick creation, keyboard-based manipulation and easy
duplication.3 Also, check-expect-based tests run after the rest
of the program, and can be placed above the procedure definition.
This successfully encourages the students to write test cases before
writing the procedure definition.

Thus, even though the difference between the graphical test
boxes andcheck-expect is linguistically insignificant, the results
differ dramatically: Details matter.

5.2 Signatures

An important part of the design recipes is the formulation ofa
contract for every procedure. In HtDP the contracts are comments:

;; is-5? : number -> boolean
(define (is-5? n)
(= n 5))

The HtDP language of contracts is informal. (HtDP predates PLT’s
well-known research on contracts as part of the programminglan-
guage.) Most contracts look like type signatures. (Some represent
more complex predicates, but this is not the main point here.)

Writing down contracts is important for the students, as it helps
answer typical questions, such as how many arguments they should
supply in a procedure call, or how they should order them. Thus,
contracts further guide decisions students have to make when they
write their programs, and, once written, do so without requiring the
student to think about the concrete problem at hand. Consequently,
the remove the process of constructing the program from “solving
the whole problem” by one—often crucial—step. Furthermore,
TAs use contracts as anchors for giving helpful instructions,

As contracts are not subject to static type checking, type errors
do not keep a student from running the program and observing its
behavior. Consequently, whilewriting down a type signature would
have the same benefits as writing down the contract, the effects of
doing this in a statically typed language would be detrimental for
the beginning student whentrying to run the program.

The complete lack of checking also creates problems: Many
students quickly realize that the contract comments have nobearing
on the running program, and as a result they are sloppy with more
complicated contracts. This led DMdA to addsignatures as formal
parts of the teaching languages in 2008, which take the placeof
HtDP’s informal contracts. Here is a signature declarations:

(: is-5? (number -> boolean))

Any signature violation is logged like a test-case violation—see
Figure 1. The feedback to the student includes the expression in the
program whose evaluation violated the signature, the signature that
was violated, and the value that violated it. The value is important
for the student, as it provides concrete evidence that the program
did something wrong (rather than a type system’s assertion that the
programmight do something wrong), and helps the student figure
out the source of the problem.

While replacing contracts with signatures does not significantly
alter the pedagogy of the course, automatic checking plays the
role of the lab supervisor for the students, and provides more
immediate and precise feedback. The introduction of signatures
showed instant results in class: The students were more thorough
about writing them, and programming was more in line with the
design recipes, as each part of a data definition now results in an
actual piece of program code: The code for a definition for mixed

3 In hindsight, this seems obvious, but it was far from obviousat the
time, considering the prevalence of graphical paradigms inprofessional
development environments.

data (the terminology used by DMdA and HtDP for “sums”), which
previously had no counterpart in the code, looks like this:

(define animal
(signature (mixed ant armadillo bigfoot)))

This definition can be read as “an animal is an ant, armadillo,
or a bigfoot” or, more precisely, “a value matching the signa-
ture animal must match one of the signaturesant, armadillo,
bigfoot.” Thesignature keyword marks the expression as writ-
ten in signature syntax.4

Compound data requires no new special form with signatures—
students write regular signatures for the constructors, predicates,
selectors and mutators. For the ants record definition from Sec-
tion 4.2, students would typically write the following signatures:

(: make-ant (real posn -> ant))
(: ant? (%a -> boolean))
(: ant-weight (ant -> real))
(: ant-loc (ant -> posn))

The first line declares that the constructor for ants acceptsa real
number and a position, and returns anant record, the next that
ant? accepts any value and returns a boolean, and the two follow-
ing lines that the selectors for the weight and loc fields accept an
ant record and return a real number and position, respectively.The
first declaration already says all there is to say about ants—all pred-
icates have the same signature. The selector signatures simply mir-
ror the constructor signature, and we originally taught ourstudents
to only write this first line. To our (pleasant) surprise, thestudents
soon insisted on writing all signatures, which have since been con-
sistently helpful in getting students to understand the concepts of
predicate and selector.

The %a signature is a signature variable, as is every identifier
appearing in a contract that starts with a%. This notation allows
formulating typical “polymorphic” signatures like this:

(: map ((%a -> %b) (list %a) -> (list %b)))

The implementation views any such signature as meaning “any”—
hence, the system does not check correct use of parametric poly-
morphism, and thus fails to prevent students from being sloppy
with proper use of signature variables. However, this problem is
quite minor compared with the sloppiness we had observed earlier.

Note that signatures work as invariants for procedure calls.
Conversely, the “real” contracts that are available in Racket monitor
the flow of values across module boundaries (Flatt et al. 2010).

5.3 Properties

We noticed in the Tübingen 2008 course that some students, when
the course introducedcheck-expect, would ask whether it might
be possible to check for properties rather than examples. This
struck a nerve with the DMdA team, as the textbook includes a
section on formal specification using equational properties based
on ADTs. This section had never worked particularly well, asit
requires talking about semantics in terms of universal algebra. This
was time-consuming and too obscure for students to grasp in the
first semester. Moreover, we found that formulating interesting
properties—such as fundamental properties of search trees—was

4 Thesignature syntax could almost but not quite be expressed as a com-
binator library, or individual macros formixed etc.: Thesignature syn-
tax delays references to signature variables and invocations of signature
abstractions to allow recursive signatures. Moreover, it attaches fresh loca-
tions to the various parts of the syntax to enable intuitive error reporting. For
example, when thenumber signature ofis-5? above is violated, the visual
feedback marks the particular occurrence ofnumber in is-5?’s signature.
To enable this, the system must treatnumber differently from a generic
variable reference.

Figure 1. Signature violation in DrScheme

beyond the reach of the framework we had introduced, which was
already too complex.

Consequently, we decided to instead introduce properties in the
concrete context of programming and add support for them to the
DMdA languages. Here is an example:

(define +-is-commutative
(for-all ((a number) (b number))

(= (+ a b) (+ b a)))

The range of variables in the newfor-all construct is specified
using signatures. Thus, adding signatures to the language paid off in
an unexpected way. Properties are objects, which can be composed.
The newcheck-property form can be used to check a property:

(check-property +-is-commutative)

This invokes a QuickCheck clone (Claessen and Hughes 2000),and
DrScheme displays counterexamples along with the test results.

As signatures are run-time objects, the system constructs the
value generators needed for QuickCheck using “regular program-
ming” rather via type-class-based overloading. The fact that signa-
tures are objects enables simple abstractions accessible to begin-
ners, such as this:

(: commutativity
((number number -> number) signature
-> property))

(define commutativity
(lambda (op sig)

(for-all ((a sig) (b sig))
(= (op a b) (op b a)))))

This enables concrete practice dealing with abstract properties—
this is helpful for our beginning students who struggle withthe gen-
eral concept of “commutativity” when divorced from arithmetic.

Properties have now replaced the ADT-based approach to for-
mal specification in the course, and the course segues from the
QuickCheck testing to actual proofs of properties. Initialfeed-
back from the 2009/2010 courses in Tübingen and Freiburg has
been positive. In the Tübingen course, which placed more em-
phasis on properties, the students invented properties—typically
simple algebraic properties such as commutativity, associativity,
distributivity—throughout the course. Consequently, we are confi-
dent that properties will play a more prominent and supportive role
in future courses. However, we will need to assess more systematic
feedback and gather more experience to fully realize this potential.

6. Assessing Success
Many pedagogic interventions have unexpected effects: Often, the
best intentions are not sufficient to make a good idea work in

practice. We generally assess the success of our own interventions
through frequent testing, final exams, and direct observation, al-
ways comparing the results to those of previous courses, some of
which have yielded significant empirical effects (Bieniusaet al.
2008). However, it is difficult to isolate the effects of individual
changes in the teaching languages in empirical measurements. In
particular, it is difficult to measure how many problems students
were unable to solve because of language-design issues. Thus, we
rely on direct observation in our supervised lab exercises,where
our TAs log any problems the students have where the program
environment or the programming language may help.

We were able to observe some specific effects, however: For ex-
ample, before the introduction of signatures, most contracts written
by the students contained errors, whereas afterwards, mostsigna-
tures did not contain errors. The effect of properties is notempiri-
cal, as theyenable a particular didactic approach—we believe the
basic approach is already validated, as many students are able to
write properties on their own, whereas the previous ADT-based ap-
proach to specification was a disaster, as students were not able to
formulate properties on their own.

7. Growing Teaching Languages
While it has become clear that standard Schemeas-is was not an
ideal teaching language, it was still a good starting point for our
endeavors: Functional programming is a more appropriate begin-
ners’ paradigm than imperative or object-oriented programming;
Scheme, being a functional language, supports the paradigms
needed for implementing the design recipes, and its generalab-
straction mechanisms make it ideal for practicing abstraction. Its
simple syntax makes classroom treatment easy.

Educators and implementors can improve the learning experi-
ence with any (functional) language. This requires substantial ac-
tion research and observation-driven improvement as part of a long-
running process, as our experience has demonstrated. Moreover,
educators do well to clearly define their teaching goals. Appropriate
goals are defined in terms of the actual learning experience rather
than the subject coverage in class. The following principles have
served us well on our journey:

• Observe your students directly and closely.

• Be willing to abandon your favorite aspects of the course or
teaching language—at least be willing to move them to a dif-
ferent place.

• Keep making changes, evaluate them, and be willing to abandon
them if they do not work.

• Cooperate with others who are doing similar work. Learn from
their mistakes.

8. Related Work
There are surprisingly few constructive investigations ofhow par-
ticular design elements of a programming language can support or
hinder a beginner’s effort to learn programming. Wadler’s critique
of Scheme for teaching (Wadler 1987) is such a constructive inves-
tigation; Wadler stresses the importance of a type-based approach
to program construction, recognizes the problems of Scheme’s ex-
ternal representation, and the importance of algebraic techniques in
understanding programs. The work on support for testing in Profes-
sorJ (Gray and Felleisen 2007) shows the importance of a concise
and lightweight notation for tests, and thus mirrors the experience
we had with test boxes andcheck-expect.

The paper by McIver and Conway (McIver and Conway 1996)
identifies a number of issues in the design of languages for intro-
ductory programming. The paper aptly concludes:

This implies that the most important tool for pedagogical
programming language design is usability testing, and that
genuinely teachable programming languages must evolve
through prototyping rather than springing fully-formed
from the mind of the language designer.

The work on Helium (Heeren et al. 2003) demonstrates the Haskell
community’s insight that beginners have needs different from those
of professionals—specifically, that they require better (type) error
messages. Also, Helium, lacking type classes, is effectively a be-
ginner’s language level for Haskell. The Helium project uses con-
crete observations of students’ interactions with the system to im-
prove it (van Keeken 2006). Generally, producing comprehensible
type error messages in Hindley-Milner-typed languages is ongo-
ing research (Rahli et al. 2009). Marceau et al. have recently stud-
ied the quality of the error messages in DrScheme more systemati-
cally and concluded that there is still significant room for improve-
ment (Marceau et al. 2010). DrJava (Hsia et al. 2005) has picked
up the concept of language levels from DrScheme.

9. Conclusions
The programming language used by an introductory course can
be either a help to the student, or an obstacle. However, even
though the typical professional functional language is less complex
than the typical professional object-oriented language, problems
remain. Improving this situation requires language designspecif-
ically geared towards beginning students. The properties of these
languages arise from the pedagogic principles of the course—the
design recipes—and continual improvement from an ongoing pro-
cess and observation of the students.

The HtDP and DMdA languages have come a long way in sup-
porting the beginning student. However, work on them is ongoing,
and we believe further refinements are possible. In the near future,
we will continue to work on the error messages, again following
PLT’s lead (Marceau et al. 2010). We have also ported the workon
signatures in the DMdA levels to the HtDP levels, which will be
available in a future version of DrRacket. As many signatures al-
ready look like types, we also plan to experiment with addingaddi-
tional levels that treat the signatures as type declarations. Moreover,
we expect experience to guide us towards further improvements. In
the future, we may benefit from a more systematic approach to eval-
uating our success instead of our past action research. We welcome
new adopters and their feedback. We call on educators who teach
programming using other languages to use similar or improved pro-
cesses to tailor their tools to the needs of their students.

10. Acknowledgments
Many people were involved in shaping the DMdA and HtDP lan-
guage levels: Matthias Felleisen and the members of the PLT

group—particularly Matthew Flatt, Robby Findler, ShriramKr-
ishnamurthi, and John Clements—are responsible for the ongo-
ing development of DrRacket. Martin Gasbichler helped develop
the DMdA language levels. Peter Thiemann and Torsten Grust
and their groups provided helpful suggestions on the designof the
DMdA languages, based on their own intro courses. Carl Eastlund
suggested adding randomized testing to the language levels.

References
Harold Abelson, Gerald Jay Sussman, and Julie Sussman.Structure and

Interpretation of Computer Programs. MIT Press, Cambridge, Mass.,
second edition, 1996.

Annette Bieniusa, Markus Degen, Phillip Heidegger, Peter Thiemann, Ste-
fan Wehr, Martin Gasbichler, Marcus Crestani, Herbert Klaeren, Eric
Knauel, and Michael Sperber. HtDP and DMdA in the battlefield. In
Frank Huch and Adam Parkin, editors,Functional and Declarative Pro-
gramming in Education, Victoria, BC, Canada, September 2008.

Koen Claessen and John Hughes. QuickCheck: A lightweight tool for ran-
dom testing of Haskell programs. In Philip Wadler, editor,Proceedings
International Conference on Functional Programming 2000, pages 268–
279, Montreal, Canada, September 2000. ACM Press, New York.ISBN
1-58113-202-6. doi: http://doi.acm.org/10.1145/351240.351266.

Will Clinger, R. Kent Dybvig, Michael Sperber, and Anton vanStraaten.
SRFI 76: R6RS records.http://srfi.schemers.org/srfi-76/,
September 2005.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Kr-
ishnamurthi.How to Design Programs. MIT Press, 2001.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Kr-
ishnamurthi. The TeachScheme! project: Computing and programming
for every student.Computer Science Education, March 2004.

Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew Flatt,
Shriram Krishnamurthi, Paul A. Steckler, and Matthias Felleisen.
DrScheme: A programming environment for Scheme.Journal of Func-
tional Programming, pages 159–182, March 2002.

Matthew Flatt, Robert Bruce Findler, and PLT.Guide: Racket. PLT, 2010.
Available fromhttp://pre.plt-scheme.org/docs/.

Kathryn E. Gray and Matthias Felleisen. Linguistic supportfor unit tests.
Technical Report UUCS-07-013 2007, University of Utah, 2007.

Bastiaan Heeren, Daan Leijen, and Arjan van IJzendoorn. Helium, for
learning Haskell. In Johan Jeuring, editor,Proceedings of the 2003 ACM
SIGPLAN Haskell Workshop, pages 62–71, Uppsala, Sweden, August
2003.

James I. Hsia, Elspeth Simpson, Daniel Smith, and Robert Cartwright.
Taming Java for the classroom. InSIGCSE 2005, February 2005.

Herbert Klaeren and Michael Sperber.Die Macht der Abstraktion. Teubner
Verlag, 1st edition, 2007.

Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. Measuring
the effectiveness of error messages designed for novice programmiers.
In 2010 Workshop on Scheme and Functional Programming, Montréal,
Québec, Canada, August 2010.

Linda McIver and Damian Conway. Seven deadly sins of introductory
programming language design. InProceedings Software Engineering:
Education & Practice, pages 309–316, Los Alamitos, CA, USA, 1996.
IEEE Computer Society Press.

Vincent Rahli, J. B. Wells, and Fairouz Kamareddine. Challenges of a
type error slicer for the SML language. Technical Report HW-MACS-
TR-0071, Heriot-Watt University, School of Mathematics & Computer
Science, September 2009.

Peter van Keeken. Analyzing Helium programs obtained through logging
— the process of mining novice Haskell programs —. Master’s thesis,
Utrecht University, October 2006. INF/SCR-05-93.

Philip Wadler. A critique of Abelson and Sussman or why calculating is
better than scheming.SIGPLAN Notices, 22(3):83–94, March 1987.

