Experience Report:
Growing Programming Languages for Beginning Students

Marcus Crestani

University of Tubingen
crestani@informatik.uni-tuebingen.de

Abstract

A student learning how to program learns best when the pnogra
ming language and programming environment cater to heifgpec
needs. These needs are different from the requirementsrofesp
sional programmer. Consequently, the design of teachimguiages
poses challenges different from the design of “profesdidaa-
guages. Using a functional language by itself gives adgmstaver
more popular, professional languages, but fully explgitimese ad-
vantages requires careful adaptation to the needs of ters+—
as-is, these languages do not support the students neavisilees
they could. This paper describes our experience adoptendittac-

tic approach oHow to Design Programs, focussing on the design
process for our own set of teaching languages. We have atserv
students as they try to program as part of our introductotysm
and used these observations to significantly improve thigjled
these languages. This paper describes the changes we hdee ma
and the journey we took to get there.

Categories and Subject Descriptors D.2.10 [Software Engineer-
ing]: Design—Methodologies; K.3.ZJomputersand Education]:
Computer and Information Science Education—Computenfseie
Education

General Terms Design, Languages
Keywords

1. Introduction

Functional programmers know that the choice of languagectsf
the thinking of programmers and thus the design of softwEhne.
choice of language also matters when it comes to teaching-int
ductory programming: It profoundly affects the studentshking
repertory, as well as their learning experience. An “off thek”
language poses significant challenges for beginners add terbe
an obstacle to learning (Felleisen et al. 2004; Findler.2@02).

In 1999, the University of Tubingen started revising ittrdén
ductory course: A functional-programming-based courgéaced
more traditional previous offerings using Pascal, C++, aval
The course was, to a large degree, based on the clSssic-
ture and Interpretation of Computer Programs (or SCP) (Abel-
son et al. 1996). We were aware at the time of Rice PLT’s effort
led by Matthias Felleisen, that would resultHiow to Design Pro-
grams (or HtDP) (Felleisen et al. 2001), which, however, had not
been published yet—consequently, we only had a vague idiés of

Introductory Programming

Permission to make digital or hard copies of all or part of thork for personal or
classroom use is granted without fee provided that copeesar made or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteowess or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’10, September 27-29, 2010, Baltimore, Maryland, USA.

Copyright(© 2010 ACM 978-1-60558-794-3/10/09. . . $10.00

Michael Sperber

DeinProgramm
sperber@deinprogramm.de

central tenets. We used PLT’s DrScheme (now called DrRafiket
the course, seeing it mainly as a graphical IDE for Schentkttars
easier to use for students than traditional Scheme systepesif-
ically, we ignored its hierarchy of language levels andeadtran
DrScheme in its RRS mode. Our underlying assumption was the
same as that of SICP, namely that the sheer power of funttiona
programming combined with the syntactic simplicity of Setee
would make both teaching and learning so easy that we would fix
all the problems of the previous courses instantly. Howewéile
Scheme fixed many problems, significant issues remdined.

After having written a textbook on this approach, it took asilu
2004 to realize that SICP’s example-driven approach tohiagc
did not work as well as we had expected with a large portion
of our students: SICP admirably explains how many concepts o
software development—abstraction in particular—work,this is
not enough to enable students to solve problems on their Byn.
this time, HtDP had appeared, and we started to adopt itsatent
didactic concept, theesign recipes, which implement an explicit
programming process, driven by a data analysis.

Adopting the design recipes meant expressing their coadept
code. However, pure /RS Scheme is a poor match for the de-
sign recipes—it lacks native constructs for compound datzed
data (“sum types”), and noting violations. Consequentlystarted
implementing our own “language level,” which included thessa
ing features and allowed us to adopt HtDP’s design recipbew
staying close to “standard” Scheme. We still shunned HtDBRs
language levels, as they deviate significantly frorR8 Scheme.
However, even though we did not know it at the time, we had-repl
cated the first step of PLT’s own journey towards the languege
els, and we would replicate more.

For reasons initially unrelated to the language, we stasted
serving our students as they worked on exercises (Bieniuah e
2008). Soon, we saw that, despite Scheme’s simplicity,estisd
were making syntactic and other trivial mistakes. Expexdehpro-
grammers “see” these mistakes immediately, but studetes db
not. This can be immensely frustrating, and a significant lmem
of students gave up on programming on their own as a resudt. Di
turbingly, many of these mistakes could have been detegtéideb
Scheme implementation if only the language and the error mes
sages were restricted to what the students knew. Conségueat
started implementing restrictions in line with the coursed cus-
tom error messages—replicating another step of PLT’s éxpes.

Moreover, we saw that some students would read ahead and
make use of programming-language features not yet covertbe i
course (most popular: assignments), which destroyed itzupiodi-
dactic points: Thus, we implemented a sequence of progedgsi
bigger language levels, replicating and thus confirminditied es-
sential step of PLT’s development of the HtDP language evel
2006, after adding more add-on features analogous to HtB&ERH
as the handling of images and functional animations, we aad |

1We were wrong about the course on other aspects as well (Biit al.
2008).

guage levels almost completely analogous to HtDP’s. Weibe messages from DrScheme that reported the mistakes, antlthe s
lished our own follow-up textbookDie Macht der Abstraktion (or dents’ reaction to the error messages. The authors did ¢énsop-
DMdA, German foiThe Force of Abstraction) (Klaeren and Sperber ally, and additionally trained our student TAs to look forstaikes,
2007). In retrospect, we could have gotten there much faster and report their observations to us. We also tried to raisesth-
cheaper. However, at the time, we did not have PLT’s expegien dents’ awareness of these issues and report them. Howegst, m

and the rationale for their design, and thus had proudlyrasdia of the helpful observations we made ourselves, closelpfiat by

“not-invented-here” stance. the TAs reports—we received very little unsolicited feedbrom
Nevertheless, the design process for our teaching language the students, and even this was mostly ad-hoc in-class de&db

did not end there: The HtDP language levels still had ingeffic The following insights from our experience have stayed with

support for some aspects of the design recipes—in partjdelst
cases, mixed data, and contracts. Moreover, new desirapécts
of teaching languages emerged—most recently, the suppddrf
mal properties of programs. This paper documents our expegi
with adopting the HtDP approach and evolving our teachimg la

¢ We did not even know we had a problem, even though we have
always maintained an open door and open ears for our students
Consequently, it was extremely easy to deceive oursehas th
“everything was fine.”

guages to better meet the students’ needs. e Mistakes made by one student were often repeated by other
students.
2. HtDP’s Language Levels e What seems easy or natural to us does not necessarily appear

The HtDP (and DMdA) languages have evolved from Scheme, that way to the students.

which, at the time, had been the basis for many introducte t * We could not expect the students to give us, on their own
books and courses, as its small size make it attractive fmsel initiative, the specific feedback we need to improve the seur
room use, and beginning students take well to the simple &figie and the software for the course.

parenthesized prefix syntax. However, standard Schemerdies
solve all language problems of the introductory course.sThua-
proving the students’ experience meant changing and inmgov
the language, as PLT's TeachScheme! project has been doigg s
1995 (Felleisen et al. 2004; Findler et al. 2002).

In particular, students make mistakes when writing code. |
the student is to make independent progress, the progragnmin . .
environment must provide feedback that enables the studdix 4. Simple Differences
the mistakes on her own. These mistakes are often trivialte&y The original DMdA languages of 2006 differed from the HtDP

The design decisions documented in this paper were mostgtdi
consequences of this action research, which is ongoingle§tis
scores in the programming exercises of the final exams hawve co
tinually risen since we have adopted design recipes antkdtin-

¢ proving our teaching languages.

errors (which occur even with the “trivial” Scheme syntamjldaype languages in several minor ways—partly to reduce the diffees
errors can be detected by the programming environment.itelp ~ with standard Scheme, and partly to cater more specificalbut
students fix other kinds of mistakes—misunderstanding yhtag German audience. The HtDP languages generally appeal to the
or using features not yet covered in class—require actumigs students’ prior training in algebra, sacrificing some of dhigjinal
to the languages beginners program in. Scheme syntax, whereas the DMdA languages stay closer to the

In DrScheme, at any given time, the beginner uses one of sev-original Scheme. The differences illustrate some of thesitats
eral language levels. A language level is an operation mode of designers of languages for beginners face.
DrScheme that provides a language subset tailored to thus rde . -
the beginner at that time. As the student progresses, shehesito 4.1 Procedure/Function Definitions
more advanced language levels, each of which is a supertige of The difference in the handling of algebra is most visible ioge-
previous level. Each language level has its own implemiemtadf dure definitions: In HtDP, procedures (called “functionséite) are
error reporting tailored to the beginner’s needs. The enegsages defined with the usual Scheme syntactic sugar:

only mention terms that the course has introduced up to thiat.p (define (£ x)

L)

3. Popularity # Success _ . o . L

) P y# This emphasizes the similarity to function definitions intheanat-
Adopting HtDP's insights for what would become DMdA was a ics as well as the visual congruence between function defirsit
lengthy process: Prior to the 2004 course, we only had a vague and calls, and makes it easy to “see” the substitution thatirsc

idea what the students were doing when they were on their own. conversely, DMdAs procedure definitions use an explieitbda:
That did not keep us frorbelieving we had a fairly good idea of

what they were doing, namely solving their homework prollem (define £
using the techniques we had taught them. Only when we started ~(lambda (x)
personally supervising lab exercises, we found out thastilgents =)

did not always follow the path we had laid out for them, and This makes it easier later to introduce higher-order proces| as it
encountered numerous difficulties. This was easy to addiessy is straightforward to move theambda somewhere else as opposed
personal supervision, but would have kept the students $aiwing to explaining the concept of syntactic sugar, but loses theaV
homework problems when on their own. In fact, many students congruence. This is no great loss, however, as German s$tuden
resorted to copying somebody else's homework (Bieniusd.et a typically cannot identify the mathematical substitutiorinpiple,
2008), and our impressions of what the students were domgdu anyway—the subject does not play the explicit role in Geririgh

out to be quite wrong, even though we thought we had goodneaso school that it enjoys in US curricufaExplaining it from scratch

to believe they were right: The course was popular with stt&le \jth 1ambda is thus no more difficult than explaining it using the
and passing rates were higher than with the previous, ttcadil” syntactic sugar.

courses, even though we had covered more difficult material.
When we realized this, we started observing our student® mor 2jronically, Felleisen traces back the algebraic aspectigotraining in
closely. Specifically, we recorded the mistakes they mdudeetror German high school, where algebra sadly has since been pleasined.

4.2 Record Definitions

An important part of HtDP and DMdA is the treatment aim-
pound data. Instructors teach students to recognize compound data,
and use record definitions as implementations of the resuitata
definitions. Teaching compound data effectively is suipgly dif-
ficult, as beginning students tend to get confused aboutitree of
“several things becoming one.” Both DMdA and HtDP instrusto
teach simple heuristics such as that the number of comp®ient
the data definition should match the number of fields. (“Howyna
parts does a calendar date have? Three! How many fields dees th
record-type definition for calendar dates have? Three!l3 ieans

that the programming aspects of compound data ought to bimas s
ple as possible, to not add to the students’ burden.

Scheme has a long history of “record wars” (Clinger et al.
2005), hence it is no surprise that DMdA and HtDP chose differ
syntaxes for their record-type-definition forms. HtDP hhssen a
so-called “implicit-naming” form. For example, considéetfol-
lowing HtDP “struct definition:

(define-struct ant (weight loc))

This is in fact a definition of four procedures: A record couastor
calledmake-ant, a predicatent?, and two selectorsnt-weight
andant-loc. The names are not explicitly mentioned in the form,
hence “implicit-naming.”

The DMdA teaching languages provide an “explicit-naming”
form. Here is a definition equivalent to the above:

(define-record-procedures ant
make-ant ant?
(ant-weight ant-loc))

This is more verbose than the HtDP form, but makes it easier
for the students to see that the form defines identifiers, amat w
those identifiers are. Als@efine-record-procedures allows
choosing arbitrary names for the various procedures, éwaugh
we emphasize the value of the conventions used above. Mereov
the DrScheme “Rename” menu entry works with explicit naming
form, but not with the implicit naming.

Some instructors in Germany experimenting with the HtDP lan
guages reported that a significant number of students héie dif
culty understanding the “magic” of implicit naming. Thisrpe-
ular problem is not as significant in DMdA courses; signhatsee
Section 5.2) further alleviate any problems the studentg naae
with writing record-type definitions.

4.3 Print Format

The REPL of a typical Scheme implementation accepts an sxpre
sion and then prints its value. While the output format ofvhkie
is not standardized, most Scheme implementations outp(stan-
dard) external representation of the value: 5 printssa&rue”
prints as#t, and the list with elements 1, 2, and 3 prints @s
2 3). While the use of the external representation has advasitage
for dealing with advanced features of Scheme such as rajinege
program source code as dataal andquote, it confuses many
beginning students about the difference between expressind
values. For example, the expressi@nist ’+ 1 2) evaluates to
(+ 1 2), which looks like an expression that evaluates to 3.
HtDP and DMdA avoid this confusion by using output formats
different from the external representation. As HtDP emizessthe
relationship between algebra and programming, it printseach
value as a canonical form that evaluates to it. Thus, thenit
elements 1, 2, 3prints dgons 1 (cons 2 (cons 3 empty)))
or (1ist 1 2 3) (depending on the language level), which, as an
expression, again evaluates to a list with elements 1, 280/l
values are printed as constructor calls—for example, arwiht
print out as(make-ant w (make-posn x y)).

With DMdA, we instead chose to emphasize the distinction
between the expressiofmake-posn 1 2) and its value. This
is particularly relevant in DrScheme’s stepper (Findler abt
2002), which displays intermediate reductions as expassh
DMdA, the list prints as#<list 1 2 3>, and the ant prints as
#<record:ant w #<record:posn z y>>. This has the tech-
nical disadvantage of not being usable as an expressioraléwit
prevents certain abstraction violations: In particularprievents
students from cutting and pasting the result directly intesh case.

Both approaches have been successful at avoiding the éomfus
associated with the standard external representation.

4.4 Minor Language Changes

We made additional minor changes over the HtDP languages. On
example is the omission of symbols in favor of strings: HtRR(

an ordinary Scheme programmer) uses symbols for enumesatio
(’solid, ’liquid, ’gaseous) where DMdA uses strings. This
avoids the notational difficulties of using symbols, in parar

the syntactic restrictions (no spaces etc.), and also tletiooal
confluence between symbols and variables. We had obseresel th
problems in earlier incarnations of the course, and switgho
strings solved them all. (One might argue that this is lefisieft,

but it is the introductory course, after all.)

Delaying symbols enables DMdA to also releggtete (in-
cluding quoted lists) to the very end, the general notion bictv
was quite confusing to students when introduced earliee Th
inconvenience—list "solid" "liquid" "gaseous") instead
of > (solid liquid gaseous)—is well worth it.

5. Growing the Teaching Languages

In 2006, when the DMdA teaching languages had become roughly
analogous to the HtDP languages, we could focus on further im
provements. In particular, we adopted and improved uporenew
developments in the HtDP languages such as the supporsfmge

We have also developed two new additions: support for sigaat

and the formulation of general, checked properties of poces.

5.1 Encouraging Testing

Writing test cases is an early step of the design recipesatticp-
lar, students should write test cases before they write rihesplure
definition itself.

When we originally introduced testing as a mandatory part of
the design recipes, we adopted graphical test boxes, whibi H
had implemented previously, that the students had to insera
menu and fill out like a form. A test box would contain “Test'dan
“Should be” fields, that would be tested for equality. DrSuolee
would decorate test boxes of successful tests with greeksnaad
failed tests with red marks and the actual value. The ideathats
the graphical and form-like approach would make testingemor
attractive to students, but in fact the opposite was the:CHse
students found the GUI manipulation required to use tese®ox
too cumbersome. Moreover, the test boxes had to cafiee the
procedure definition of the procedure they were supposedsto t
even though the design recipes specify that the students them
before writing the procedure definition. As a result, many students
wrote their test cases after completing the procedure body.

To encourage the students to test more, we replaced the mech-
anism for writing tests by one HtDP had implemented earlier:
stead of graphical test boxes, test cases are formulatddinspde
using thecheck-expect form that accepts a test expression and a
should-be expression as operands. The test casesfa” can be
formulated as @heck-expect form like this:

(check-expect (is-57 7) #f)

When we replaced graphical test boxes dheck-expect, the
students wrote significantly more test cases. Theck-expect
form allows quick creation, keyboard-based manipulatioth @asy
duplication® Also, check-expect-based tests run after the rest
of the program, and can be placed above the procedure dafiniti
This successfully encourages the students to write teesdafore
writing the procedure definition.

data (the terminology used by DMdA and HtDP for “sums”), whic
previously had no counterpart in the code, looks like this:

(define animal
(signature (mixed ant armadillo bigfoot)))

This definition can be read as “an animal is an ant, armadillo,
or a bigfoot” or, more precisely, “a value matching the signa

Thus, even though the difference between the graphical testture animal must match one of the signaturest, armadillo,

boxes andtheck-expect is linguistically insignificant, the results
differ dramatically: Details matter.

5.2 Signatures

An important part of the design recipes is the formulationaof
contract for every procedure. In HtDP the contracts are comments:

;3 1s-57 : number -> Dboolean
(define (is-57 n)

(= n 5))

The HtDP language of contracts is informal. (HtDP predatdssP
well-known research on contracts as part of the programiaimng
guage.) Most contracts look like type signatures. (Someessmt
more complex predicates, but this is not the main point here.

Writing down contracts is important for the students, azlph
answer typical questions, such as how many arguments tloeydsh
supply in a procedure call, or how they should order them.sThu
contracts further guide decisions students have to make ey
write their programs, and, once written, do so without raggithe
student to think about the concrete problem at hand. Coestigu
the remove the process of constructing the program fronviisgl
the whole problem” by one—often crucial—step. Furthermore
TAs use contracts as anchors for giving helpful instructjon

As contracts are not subject to static type checking, typer®r
do not keep a student from running the program and obsertang i
behavior. Consequently, whiteriting down a type signature would
have the same benefits as writing down the contract, thetefééc
doing this in a statically typed language would be detrirakfar
the beginning student wherying to run the program.

The complete lack of checking also creates problems: Many
students quickly realize that the contract comments haweadng
on the running program, and as a result they are sloppy witte mo
complicated contracts. This led DMdA to addnatures as formal
parts of the teaching languages in 2008, which take the place
HtDP’s informal contracts. Here is a signature declaration

(: is-57 (number -> boolean))

Any signature violation is logged like a test-case violatiesee
Figure 1. The feedback to the student includes the expresstbe
program whose evaluation violated the signature, the gigashat
was violated, and the value that violated it. The value isartgnt

for the student, as it provides concrete evidence that tbgram

did something wrong (rather than a type system'’s assettitthe
programmight do something wrong), and helps the student figure
out the source of the problem.

While replacing contracts with signatures does not siggnifty
alter the pedagogy of the course, automatic checking plags t
role of the lab supervisor for the students, and providesemor
immediate and precise feedback. The introduction of sigeat
showed instant results in class: The students were moreugbr
about writing them, and programming was more in line with the
design recipes, as each part of a data definition now resulis i
actual piece of program code: The code for a definition foremix

3In hindsight, this seems obvious, but it was far from obviaisthe
time, considering the prevalence of graphical paradigmprafessional
development environments.

bigfoot.” The signature keyword marks the expression as writ-
ten in signature synteak.

Compound data requires no new special form with signatures—
students write regular signatures for the constructorsdipates,
selectors and mutators. For the ants record definition frem+ S
tion 4.2, students would typically write the following separes:

(: make-ant (real posn -> ant))
(: ant? (%a -> boolean))

(: ant-weight (ant -> real))

(: ant-loc (ant -> posn))

The first line declares that the constructor for ants acceptsal
number and a position, and returns amt record, the next that
ant? accepts any value and returns a boolean, and the two follow-
ing lines that the selectors for the weight and loc fields pcea
ant record and return a real number and position, respectiValy.
first declaration already says all there is to say about aatkpred-
icates have the same signature. The selector signaturpkysimt-
ror the constructor signature, and we originally taughtstudents
to only write this first line. To our (pleasant) surprise, gtedents
soon insisted on writing all signatures, which have sinentmn-
sistently helpful in getting students to understand thecepts of
predicate and selector.

The %a signature is a signature variable, as is every identifier
appearing in a contract that starts withj,aThis notation allows
formulating typical “polymorphic” signatures like this:

(: map (Cha —> %b) (list %a) —-> (list %b)))

The implementation views any such signature as meanind-any
hence, the system does not check correct use of paramelyic po
morphism, and thus fails to prevent students from beingpsiop
with proper use of signature variables. However, this pobis
quite minor compared with the sloppiness we had observéigear
Note that signatures work as invariants for procedure calls
Conversely, the “real” contracts that are available in Raakonitor
the flow of values across module boundaries (Flatt et al. 2010

5.3 Properties

We noticed in the Tubingen 2008 course that some studehen w
the course introducecheck-expect, would ask whether it might

be possible to check for properties rather than examples Th
struck a nerve with the DMdA team, as the textbook includes a
section on formal specification using equational properiased

on ADTs. This section had never worked particularly wellitas
requires talking about semantics in terms of universaltakger his
was time-consuming and too obscure for students to gradpein t
first semester. Moreover, we found that formulating inténgs
properties—such as fundamental properties of search-treas

Thesignature syntax could almost but not quite be expressed as a com-

binator library, or individual macros fatixed etc.: Thesignature syn-

tax delays references to signature variables and inveotatid signature
abstractions to allow recursive signatures. Moreovettdicaes fresh loca-
tions to the various parts of the syntax to enable intuitiveraeporting. For
example, when theumber signature ofis-57 above is violated, the visual
feedback marks the particular occurrencerafiber in is-57’s signature.

To enable this, the system must treaimber differently from a generic
variable reference.

File Edit Wiew Language Racket [nsert Help

Urtitled v (define ...)~ Save [

(: is-57 (number -> boolean))
(check-expect (is-57 "wrong") #f)
(define is-57
(lambda (n)
(=n5)))

Ran 1 check.
0 checks passed.
1 contract violation.

Check failures:
11 =: expects type <number= as lst argument, given:

at 1ine 2, column @

4

check-expect encountered the following error instead of the expected value, .

"wrong"; other arguments were: 5

Step el

Check Syntax Q Run %8 Stop @

A

Die Macht der Abstraktionw

54 %

Figure 1. Signature violation in DrScheme

beyond the reach of the framework we had introduced, which wa
already too complex.

Consequently, we decided to instead introduce propenitei
concrete context of programming and add support for therheo t
DMdA languages. Here is an example:

(define +-is-commutative
(for-all ((a number) (b number))
(= (+ab) (+ba))

The range of variables in the nefer-all construct is specified
using signatures. Thus, adding signatures to the langusdefhin
an unexpected way. Properties are objects, which can beasadp
The newcheck-property form can be used to check a property:

(check-property +-is-commutative)

This invokes a QuickCheck clone (Claessen and Hughes 2800),
DrScheme displays counterexamples along with the tesltsesu

As signatures are run-time objects, the system constrhets t
value generators needed for QuickCheck using “regularrprog
ming” rather via type-class-based overloading. The faat $igna-
tures are objects enables simple abstractions accessiblegtn-
ners, such as this:

(: commutativity
((number number -> number) signature
-> property))
(define commutativity
(lambda (op sig)
(for-all ((a sig) (b sig))
(= (op a b) (op b a)))))
This enables concrete practice dealing with abstract ptiege—

this is helpful for our beginning students who struggle vifith gen-
eral concept of “commutativity” when divorced from arithtice

practice. We generally assess the success of our own intene
through frequent testing, final exams, and direct obsematl-
ways comparing the results to those of previous coursese £6m
which have yielded significant empirical effects (Bieniutaal.
2008). However, it is difficult to isolate the effects of imiiual
changes in the teaching languages in empirical measursmant
particular, it is difficult to measure how many problems stuts
were unable to solve because of language-design issues, Whu
rely on direct observation in our supervised lab exercisdgre
our TAs log any problems the students have where the program
environment or the programming language may help.

We were able to observe some specific effects, however: For ex
ample, before the introduction of signatures, most cotgnacitten
by the students contained errors, whereas afterwards, sigyst-
tures did not contain errors. The effect of properties isampiri-
cal, as theyenable a particular didactic approach—we believe the
basic approach is already validated, as many students brdcab
write properties on their own, whereas the previous ADTedzap-
proach to specification was a disaster, as students weréleotoa
formulate properties on their own.

7. Growing Teaching Languages

While it has become clear that standard Schesies was not an
ideal teaching language, it was still a good starting paantdur
endeavors: Functional programming is a more appropriagmbe
ners’ paradigm than imperative or object-oriented programg;
Scheme, being a functional language, supports the paradigm
needed for implementing the design recipes, and its geradral
straction mechanisms make it ideal for practicing abstactits
simple syntax makes classroom treatment easy.

Educators and implementors can improve the learning experi
ence with any (functional) language. This requires sulbistiaac-

Properties have now replaced the ADT-based approach to for- tion research and observation-driven improvement as partong-
mal specification in the course, and the course segues frem th running process, as our experience has demonstrated. Woyeo

QuickCheck testing to actual proofs of properties. Inifie¢d-
back from the 2009/2010 courses in Tubingen and Freibugsg ha
been positive. In the Tibingen course, which placed more em
phasis on properties, the students invented propertigsicatyy
simple algebraic properties such as commutativity, aasoity,
distributivity—throughout the course. Consequently, we @nfi-
dent that properties will play a more prominent and suppertble
in future courses. However, we will need to assess moreragsie
feedback and gather more experience to fully realize thisntial.

6. Assessing Success

Many pedagogic interventions have unexpected effecterQfthe
best intentions are not sufficient to make a good idea work in

educators do well to clearly define their teaching goals.rAppate
goals are defined in terms of the actual learning experiesiter
than the subject coverage in class. The following princigiave
served us well on our journey:

e Observe your students directly and closely.

e Be willing to abandon your favorite aspects of the course or
teaching language—at least be willing to move them to a dif-
ferent place.

e Keep making changes, evaluate them, and be willing to alvando
them if they do not work.

e Cooperate with others who are doing similar work. Learn from
their mistakes.

8. Related Work

There are surprisingly few constructive investigationshiofv par-
ticular design elements of a programming language can stuppo
hinder a beginner’s effort to learn programming. Wadleriique
of Scheme for teaching (Wadler 1987) is such a construatives-
tigation; Wadler stresses the importance of a type-basprbaph
to program construction, recognizes the problems of Sclsegwe
ternal representation, and the importance of algebraimiqoes in
understanding programs. The work on support for testingaffie3-
sorJ (Gray and Felleisen 2007) shows the importance of asmnc
and lightweight notation for tests, and thus mirrors theegigmce
we had with test boxes antheck-expect.

The paper by Mclver and Conway (Mclver and Conway 1996)
identifies a number of issues in the design of languages for-in
ductory programming. The paper aptly concludes:

This implies that the most important tool for pedagogical
programming language design is usability testing, and that
genuinely teachable programming languages must evolve
through prototyping rather than springing fully-formed
from the mind of the language designer.

The work on Helium (Heeren et al. 2003) demonstrates theéflask
community’s insight that beginners have needs differemnhfthose
of professionals—specifically, that they require bettgp&) error
messages. Also, Helium, lacking type classes, is effdgtade-
ginner’s language level for Haskell. The Helium projectausen-
crete observations of students’ interactions with theesystio im-
prove it (van Keeken 2006). Generally, producing comprsiida
type error messages in Hindley-Milner-typed languagesnigoe
ing research (Rahli et al. 2009). Marceau et al. have recstib-
ied the quality of the error messages in DrScheme more sgstem
cally and concluded that there is still significant room foprove-
ment (Marceau et al. 2010). DrJava (Hsia et al. 2005) hasedick
up the concept of language levels from DrScheme.

9. Conclusions

The programming language used by an introductory course can
be either a help to the student, or an obstacle. However, even

though the typical professional functional language is Esmplex
than the typical professional object-oriented languageblpms
remain. Improving this situation requires language desigecif-
ically geared towards beginning students. The propertighese
languages arise from the pedagogic principles of the cedtise
design recipes—and continual improvement from an ongoiog p
cess and observation of the students.

The HtDP and DMdA languages have come a long way in sup-
porting the beginning student. However, work on them is amgo
and we believe further refinements are possible. In the ngaref,
we will continue to work on the error messages, again foltawi
PLT's lead (Marceau et al. 2010). We have also ported the work
signatures in the DMdA levels to the HtDP levels, which wil b
available in a future version of DrRacket. As many signatak
ready look like types, we also plan to experiment with addiddi-
tional levels that treat the signatures as type declaratidoreover,
we expect experience to guide us towards further improvésnbm
the future, we may benefit from a more systematic approactete e
uating our success instead of our past action research. Wemwe
new adopters and their feedback. We call on educators with tea
programming using other languages to use similar or imgtpve-
cesses to tailor their tools to the needs of their students.

10. Acknowledgments

Many people were involved in shaping the DMdA and HtDP lan-
guage levels: Matthias Felleisen and the members of the PLT

group—particularly Matthew Flatt, Robby Findler, Shrirefn-
ishnamurthi, and John Clements—are responsible for th@-ong
ing development of DrRacket. Martin Gasbichler helped tgve
the DMdA language levels. Peter Thiemann and Torsten Grust
and their groups provided helpful suggestions on the desidgine
DMdA languages, based on their own intro courses. Carl &adtl
suggested adding randomized testing to the language levels

References

Harold Abelson, Gerald Jay Sussman, and Julie SussrBaincture and
Interpretation of Computer Programs. MIT Press, Cambridge, Mass.,
second edition, 1996.

Annette Bieniusa, Markus Degen, Phillip Heidegger, Peteefiann, Ste-
fan Wehr, Martin Gasbichler, Marcus Crestani, Herbert Kdage Eric
Knauel, and Michael Sperber. HtDP and DMdA in the battlefield
Frank Huch and Adam Parkin, editofnctional and Declarative Pro-
gramming in Education, Victoria, BC, Canada, September 2008.

Koen Claessen and John Hughes. QuickCheck: A lightweightftm ran-
dom testing of Haskell programs. In Philip Wadler, editempceedings
International Conference on Functional Programming 2000, pages 268—
279, Montreal, Canada, September 2000. ACM Press, New YSBIN
1-58113-202-6. doi: http://doi.acm.org/10.1145/351380266.

Will Clinger, R. Kent Dybvig, Michael Sperber, and Anton v&traaten.
SRFI 76: R6RS recordshttp://srfi.schemers.org/srfi-76/,
September 2005.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatij &hriram Kr-
ishnamurthi.How to Design Programs. MIT Press, 2001.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt] &hriram Kr-
ishnamurthi. The TeachScheme! project: Computing andrproming
for every studentComputer Science Education, March 2004.

Robert Bruce Findler, John Clements, Cormac Flanagan,h&latt-latt,
Shriram Krishnamurthi, Paul A. Steckler, and Matthias &isén.
DrScheme: A programming environment for Scherdmirnal of Func-
tional Programming, pages 159-182, March 2002.

Matthew Flatt, Robert Bruce Findler, and PLGuide: Racket. PLT, 2010.
Available fromhttp://pre.plt-scheme.org/docs/.

Kathryn E. Gray and Matthias Felleisen. Linguistic supgortunit tests.
Technical Report UUCS-07-013 2007, University of Utah, 200

Bastiaan Heeren, Daan Leijen, and Arjan van |Jzendoorn.iuirelfor
learning Haskell. In Johan Jeuring, editBrpceedings of the 2003 ACM
S GPLAN Haskell Workshop, pages 62—71, Uppsala, Sweden, August
2003.

James |. Hsia, Elspeth Simpson, Daniel Smith, and Robertw@ght.
Taming Java for the classroom. $IGCSE 2005, February 2005.

Herbert Klaeren and Michael Sperb&ie Macht der Abstraktion. Teubner
Verlag, 1st edition, 2007.

Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurtleasuring
the effectiveness of error messages designed for novigggoniers.
In 2010 Workshop on Scheme and Functional Programming, Montréal,
Québec, Canada, August 2010.

Linda Mclver and Damian Conway. Seven deadly sins of intotahy
programming language design. Rnoceedings Software Engineering:
Education & Practice, pages 309-316, Los Alamitos, CA, USA, 1996.
IEEE Computer Society Press.

Vincent Rahli, J. B. Wells, and Fairouz Kamareddine. Cimglés of a
type error slicer for the SML language. Technical Report MACS-
TR-0071, Heriot-Watt University, School of Mathematics &m@puter
Science, September 2009.

Peter van Keeken. Analyzing Helium programs obtained tjindogging
— the process of mining novice Haskell programs —. Mastéesis,
Utrecht University, October 2006. INF/SCR-05-93.

Philip Wadler. A critique of Abelson and Sussman or why clating is
better than scheming GPLAN Notices, 22(3):83—94, March 1987.

