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The Problem: 
Computer Science1(and 2)
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• in 2007 @ Anywhere (College, University): 
variables, assignments, printing, arrays, loops, 
procedures, classes and methods,  ...  

• ... and perhaps interfaces and inheritance.
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• Programming: how do 
I create programs?

• Computing: how do 
programs compute?
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• Programming: how do 
I create programs?

• Computing: how do 
programs compute?

• Systematic Design 
(problem solving)

• Functional Programming 
(middle school algebra)

... and a little bit of fun



(define (image t) 
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Design a program that determines whether
a mouse click is inside some given Shape. 
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The Context:
Northeastern University

and American College Culture



• CS 1: 160-200 students, CS 2: ~100-120

• three lectures/week @ 55-65 mins each

• one lab session/week @ 90 mins 



• CS 1: 160-200 students, CS 2: ~100-120

• three lectures/week @ 55-65 mins each

• one lab session/week @ 90 mins 

• two office hours/week/instructor

• 10 office hours/teaching assistants

• 20 office hours/tutors, 10 grading hours/tutor

• staff meeting: 90 mins/week; train the 
assistants;  discuss students “with hope”



• one homework set/week

• goal 1: prepare exam, weight ~20%

• goal 2: pair programming

• 3-10 problems; 2-4 are graded, randomly

• one quiz/meeting:

• goal: reinforce daily learning (“keep up”)

• 1/4 is graded, randomly

• two 3-hour exams/semester

• goal: systematic design, not outcome

• week 5 and week 10/11



• Homework projects:

• goal: revisit projects across 4 weeks 

• hmwk 5: interactive graphical game

• hmwk 7: ... fix in response to criticism

• hmwk 9: ... use existing abstractions, create



• Homework projects:

• goal: revisit projects across 4 weeks 

• hmwk 5: interactive graphical game

• hmwk 7: ... fix in response to criticism

• hmwk 9: ... use existing abstractions, create

• Northeastern is a co-op university

• goal: prepare students for 3rd sem co-op

• teach principles

• ... and apply them to something they might 
encounter in industry



How to Design Programs
  - systematic design
  - model of computation
  - functions 
  - APIs/frameworks

How to Design Classes
  - systematic design
  - classes/methods
  - standard API 

Discrete Mathematics
 - sets
 - relations & functions
 - combinatorics 
 - in progr. context

How to Prove Programs
  - ideas to conjectures
  - 1st-order logic 
  - ... with theorem proving 
  - ... about HtDP code

The Curriculum



Systematic Design:
The Recipe and Its Dimensions



• design strategy:

• step by step: from problems to solutions

• iterative refinement: from core to full product
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• design strategy:

• step by step: from problems to solutions

• iterative refinement: from core to full product

• canonical outcomes:

• problem description plus choice of strategy 
produces “normalized” results (alpha, beta, tests)

• continuous process:

• small changes to problem lead to small changes 
in solutions in a predictable manner

What is Systematic Program Design



data def

purpose

examples

template

code!

test

atomic enumer. structs recurs.hier. union mut. rec. .....
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data def

purpose

examples

template

code!

test

atomic enumer. structs recurs.hier. union mut. rec. .....

describe the classes
of “problem” data; 

illustrate with examples

Structural Design



data def

purpose

examples

template

code!

test

atomic enumer. structs recurs.hier. union mut. rec. .....

state a “contract” aka
   type or method signature;

summarize purpose of 
   program/function concisely

Structural Design



data def

purpose

examples

template

code!

test

atomic enumer. structs recurs.hier. union mut. rec. .....

formulate functional aka
behavioral examples for 
the function/method 

Structural Design



data def

purpose

examples

template

code!

test

atomic enumer. structs recurs.hier. union mut. rec. .....

take inventory of all the
information you have 
about the function in the
form of a “function template”
or “function organization”

Structural Design



data def

purpose

examples

template

code!

test

atomic enumer. structs recurs.hier. union mut. rec. .....

- does the data def. identify
  distinct sub-classes? how many?
- do any of the sub-classes 
  describe compound data? 
- do any of the clauses of the 
   data def create self-references?

Structural Design



data def

purpose

examples

template

code!

test

atomic enumer. structs recurs.hier. union mut. rec. .....

now code; that is, fill in the 
gaps in the template with 
functions that combine the 
values of the expressions

Structural Design



data def

purpose

examples

template

code!

test

atomic enumer. structs recurs.hier. union mut. rec. .....

-- deal with non-rec conditions
- then remind yourself (using 
   the purpose statement and 
   examples) what the existing 
   expressions compute
- combine those computations, 
   possibly “wishing” for more

Structural Design



data def

purpose

examples

template

code!

test

atomic enumer. structs recurs.hier. union mut. rec. .....

now turn examples into 
tests and run the test suite

Structural Design



data def

purpose

examples

template

code!

test

Abstraction: higher-order data

 -- FPLs (e.g., Scheme) employ
    abstraction via parameters

 -- OOPLs (e.g., Java) use several
     forms of abstraction (abstract
     classes, generics, abstract traversals)

“program editing”

Abstraction and Design



data def

purpose

examples

template

code!

test

Generative Recursion

 -- forms of recursion that don’t follow
    from the structure of the data def. 
    (e.g., quick sort, adaptive integration)

 -- OOPL: command pattern

“Recursion”



• accumulators: 

• strong induction 

• stateful programming: 

• “circularity” of data; sharing 

• “poverty” of interface; efficiency

design attributes:



iterative refinement:  programmers are scientists

File = String
Dir = [Listof (U File Dir)]
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iterative refinement:  programmers are scientists

File = String
Dir = [Listof (U File Dir)]

File = (make-file String Nat [Listof Char])
Dir = (make-dir String [Listof (U File Dir)])

File = String
Dir = (make-dir String [Listof (U File Dir)])



• teaching:

• help students overcome an obstacle

• train teaching assistant to intervene properly 

• empower students to learn on their own 

• grading “perfect” solutions

Why Systematic Program Design



• “industrial” programming:

• if the design strategy is transparent, program 
understanding and maintenance are easy 

• small changes to problems are common; 
everyone should be able to fix them

• iterative design has become known as “agile” 
programming

Why Systematic Program Design



Systematic Design:
Some Examples



(define (image t) 
  (place-image        50 (- 100 (+ t 10))
                       (empty-scene 100 100)))

;; run program run: 
(run-simulation image)

;; Hello World (Lecture 1):



How far did the horse buggy travel in one hour, 
if it leaves Pittsburgh at 10am on Monday, going
10 miles per hour? 

t = ... 

dist. =

1 2 3 4

10 20 30 40



How far did the horse buggy travel in one hour, 
if it leaves Pittsburgh at 10am on Monday, going
10 miles per hour? 

t = ... 

dist. =

1 2 3 4

10 20 30 40

(define (dist t) (* 10 t))



Problem:

Create a a series of images that show a 
rocket (    ) descending from the top of the 
screen. The rocket descends at the constant
rate of 10 pixels/clock tick, defying all laws
of gravity. 

Let’s make movies of rockets instead:



Starting with tables:

scene =

t = ... 1 2 3 4



Starting with tables:

scene =

t = ... 1 2 3 4

(define (image  t)
  (place-image       
                      50 (* 10 t) 
                       (empty-scene 100 100)))



Starting with tables:

scene =

t = ... 1 2 3 4

(define (image  t)
  (place-image       
                      50 (* 10 t) 
                       (empty-scene 100 100)))

It’s all DOMAIN 
KNOWLEDGE!



To make this fun: 

(run-simulation f)



applies the function f  to 0, 1, 2, 3, ... 
(f 0), (f 1), (f 2), ... produces images ... 
run-simulation displays these images 
   at the rate of 28 per second (which
   we call a “clock tick”)

To make this fun: 

(run-simulation f)



(big-bang w0 ... 
   ;; creates the world, making w0 the initial world
 (on-tick tock) ; installs a “clock tick” handler 
 (on-key clack) ; installs a keyboard event handler
 (on-mouse click) ; installs a mouse event handler
 (on-draw render) ; helps render the world as a scene
)

More fun:



#| Shapes and Mouse Clicks (Lecture 18): 

 A Shape is one of: 
    -- a square;
    -- a disk; or
    -- one shape on top of another.

Design a program that determines whether
a mouse click is inside some given Shape. 
|#



(define-struct disk (radius center))
(define-struct square (size ul))
(define-struct over (top bot))

#| A Shape is one of: 
    -- (make-square Nat Posn) 
    -- (make-disk Nat Posn)
    -- (make-over Shape Shape)
   Interpretation: 
    (make-disk r p) is a green disk with center p ...
|#

data definition (English plus data sub-language):



(define-struct disk (radius center))
(define-struct square (size ul))
(define-struct over (s1 s2))

#| A Shape is one of: 
    -- (make-square Nat Posn) 
    -- (make-disk Nat Posn)
    -- (make-over Shape Shape)
|#

data definition & data examples:

(define c (make-disk 20 (make-posn 40 50)))
(define s (make-square 30 (make-posn 40 60)))
(define t (make-over s c))
(define q (make-over t (make-disk 15 ...)))



;; Shape Posn -> Boolean 
;; is position p contained in this shape s? 

(define (in? s p) false)

signature and purpose statement:



(define c (make-disk 20 (make-posn 40 50)))
(define s (make-square 30 (make-posn 40 60)))
(define t (make-over s c))

;; Shape Posn -> Boolean 
;; does this shape s contain position p?
;; examples: 
;;   (make-posn 45 45) is in shape t (why?)
;;   (make-posn 200 200) is NOT in shape t (why?)

(define (in? s p) false)

functional (behavioral) examples:



(define c (make-disk 20 (make-posn 40 50)))
(define s (make-square 30 (make-posn 40 60)))
(define t (make-over s c))

;; Shape Posn -> Boolean 
;; does this shape s contain position p?

(check-expect (in? t (make-posn 45 45)) true)
(check-expect (in? t (make-posn 100 100)) false)

(define (in? s p) false)

functional examples as tests:



#| A Shape is one of: 
    -- (make-square Nat Posn) 
    -- (make-disk Nat Posn)
    -- (make-over Shape Shape)
|#

(define (in? s p)
  (cond 
    [... ...]
    [... ...]
    [... ...]))

template creation: how many sub-classes are there?



#| A Shape is one of: 
    -- (make-square Nat Posn) 
    -- (make-disk Nat Posn)
    -- (make-over Shape Shape)
|#

(define (in? s p)
  (cond 
    [(square? s) ...]
    [(disk? s)     ...]
    [(over? s)    ...]))

template creation: how many sub-classes are there?



(define-struct over (top bot))
#| A Shape is one of: 
    -- Square
    -- Disk
    -- (make-over Shape Shape)
|#

(define (in? s p)
  (cond 
    [(square? s) ...]
    [(disk? s)     ...]
    [(over? s)    ... (over-top s) (over-bottom s) ...]))

template creation: how many are compound data?



#| A Shape is one of: 
    -- Square
    -- Disk
    -- (make-over Shape Shape)
|#

(define (in? s p)
  (cond 
    [(square? s) ...]
    [(disk? s)     ...]
    [(over? s)    ... (in? (over-top s) p) 
                      ... (in? (over-bottom s) p) ...]))

template creation: are any clauses in the DD recursive



(check-expect (in? (make-disk ...) (make-posn ..)) ...)

(define (in? s p)
  (cond 
    [(square? s) (in-square? s p)]
    [(disk? s)     (in-disk? s p)]
    [(over? s)    ... (in? (over-top s) p) 
                      ... (in? (over-bottom s) p) ...]))

let’s code:  start with non-recursive cases
      use examples, make wishes 



(check-expect (in? (make-disk ...) (make-posn ..)) ...)

(define (in? s p)
  (cond 
    [(square? s) (in-square? s p)]
    [(disk? s)     (in-disk? s p)]
    [(over? s)    ... (in? (over-top s) p) 
                      ... (in? (over-bottom s) p) ...]))

let’s code:  start with non-recursive cases
      use examples, make wishes 

wish list: 
   in-square? : Square Posn -> Boolean
   does this square contain the position
   ... 



;; does this shape s contain position p?

(define (in? s p)
  (cond 
    [(square? s) (in-square? s p)]
    [(disk? s)     (in-disk? s p)]
    [(over? s)    ... (in? (over-top s) p) 
                      ... (in? (over-bottom s) p) ...]))

let’s code:  what do the expressions in the recursive   
      cases compute? use the purpose statement 



;; does this shape s contain position p?

(define (in? s p)
  (cond 
    [(square? s) (in-square? s p)]
    [(disk? s)     (in-disk? s p)]
    [(over? s)    ... (in? (over-top s) p) 
                      ... (in? (over-bottom s) p) ...]))

let’s code:  what do the expressions in the recursive   
      cases compute? use the purpose statement 

does the top part of s contain p ?



;; does this shape s contain position p?

(define (in? s p)
  (cond 
    [(square? s) (in-square? s p)]
    [(disk? s)     (in-disk? s p)]
    [(over? s)    ... (in? (over-top s) p) 
                      ... (in? (over-bottom s) p) ...]))

let’s code:  what do the expressions in the recursive   
      cases compute? use the purpose statement 

does the bot part of s contain p ?



(define (in? s p)
  (cond 
    [(square? s) (in-square? s p)]
    [(disk? s)     (in-disk? s p)]
    [(over? s)    (or (in? (over-top s) p) 
                           (in? (over-bottom s) p))]))

let’s code:  combine the results with an existing
  primitive or make a wish for a function that 
  combines the results properly 



(define (in? s p)
  (cond 
    [(square? s) (in-square? s p)]
    [(disk? s)     (in-disk? s p)]
    [(over? s)    (or (in? (over-top s) p) 
                           (in? (over-bottom s) p))]))

let’s code:  combine the results with an existing
  primitive or make a wish for a function that 
  combines the results properly 

When students are stuck, 
we work through examples 
with them, creating tables.  



(check-expect (in-disk? c (make-posn 45 45)) true)
(check-expect (in-disk? c (make-posn 100 100)) false)
...
(check-expect (in? t (make-posn 45 45)) true)
(check-expect (in? t (make-posn 100 100)) false)
...

test! 



(define-struct world (sh ms))
;; World = (make-posn Shape Posn)
;; interpretation: the displayed shape and the last mouse click 

(big-bang 
          (make-world q (make-posn 0 0))
          (on-mouse (lambda (w x y me)
                            (if (symbol=? 'button-down me)
                                (make-world (world-sh w) (make-posn x y))
                                w)))
          (on-draw (lambda (w)
                           (scene+dot (world-ms w)
                                             (scene+shape (empty-scene 200 200)
                                                                 (world-sh w))))))

wiring it all up ... 



• Java: start with a class diagram

• interface IShape

• class(es) Disk, Square, Over extends IShape

• boolean in(Posn p) // does this shape contain p?

• follow the arrows, don’t chase beyond neighbors

• ... yields true OO designs, aka “design patterns”

• ... though clashes with bad OOPL implementations

... and it is NOT about functional programming:



Evaluation:
Students, Colleagues, Industry



• the DrScheme IDE

• teaching languages 

• text book (MIT Press)

• adapted to Java

• connected to logical reasoning

What we also have:

HtDP: 13 years, HtDC: 4 years



• HtD{P|C}: hand-and-overs to other instructors

• HtDP evaluations:

• comparative test at high school

• evaluation wrt Rice C++ course(s)

• HtDP/C at NEU

• Bootcamp for middle schools



• HtD{P|C}: hand-and-overs to other instructors

• HtDP evaluations:

• comparative test at high school

• evaluation wrt Rice C++ course(s)

• HtDP/C at NEU

• Bootcamp for middle schools

... and yet no amount of evaluation convinces anybody
who wishes to teach conventional C++/Java courses



Same Teacher

Alief School District: Year 1



Same Teacher

Class
1

Class
2

Class
3

Alief School District: Year 1



Same Teacher

Class
1

Class
2

Class
3

Same 2 Curricula

Alief School District: Year 1



Same Teacher

Class
1

Class
2

Class
3

Same 2 Curricula

Alief School District: Year 1



• All students: HtDP 
preferred by ~70%

Same Teacher

Class
1

Class
2

Class
3

Same 2 Curricula

Alief School District: Year 1



• All students: HtDP 
preferred by ~70%

• The more C++, the 
more they prefer HtDP

Same Teacher

Class
1

Class
2

Class
3

Same 2 Curricula

Alief School District: Year 1



• All students: HtDP 
preferred by ~70%

• The more C++, the 
more they prefer HtDP

• Female students: prefer 
HtDP by a ratio over 
4:1

Same Teacher

Class
1

Class
2

Class
3

Same 2 Curricula

Alief School District: Year 1



• 300 high school teachers over 4 years

• when implemented, significant AP improvement 

• 90-95%: “this approach changed my mind”,               
best CS introduction ever

Independent NSF Evaluation:



Rice Engineering Freshmen

Rice: Year 1
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Rice Engineering Freshmen

HtDP C/C++ Intro

CS/CE/Eng CE/EE/Eng

CS 212: OO Data Structures in C++

HtDP Students routinely outperform C/C+
+ students on C++

Rice: Year 1



Northeastern:

Before:
• conventional 1-year OOP (C++, Java)
• co-op students: 2/3 in “tech support”
• co-op employers routinely complain
• down-stream faculty has given up
• faculty retreats on “programming skills”



Northeastern:

After:
• systematic program design (+ models)
• co-op students: 2/3 and more in programming
• ... and “better” employers (MS, Google,  Amazon)
• co-op employers praise UGs, complain about MS
• down-stream faculty routinely praise skills (loops)
• graduate dean wishes to “lift” curriculum to MS



US School System

Elementary School
(K, 1- 4)

Middle School
(5-8)

High School
(9-12)

Bootstrap:



US School System

Elementary School
(K, 1- 4)

Middle School
(5-8)

High School
(9-12)

Bootstrap:
• after-school
• citizen teachers
• “poor” districts
• 9 weekly meetings
• the “math effect”
{

Bootstrap:



Evaluations are Irrelevant

• Observation 1: high school teachers don’t 
change their mind based on evaluations 

• Observation 2: college instructors don’t 
change their mind based on evaluations

• Observation 3: colleagues at universities 
insist on fashions,  regardless of evaluations



Evaluations are Irrelevant

• Observation 1: high school teachers don’t 
change their mind based on evaluations 

• Observation 2: college instructors don’t 
change their mind based on evaluations

• Observation 3: colleagues at universities 
insist on fashions,  regardless of evaluations

Conclusion: people who demand 
evaluations wish to stop discussion



Conclusions, Future
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first year is 
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• ... feasible 

• ... effective 
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• ... feasible 

• ... effective 

• ... productive 

Combining principles 
with pragmatics in the 
first year is 



• ... feasible 

• ... effective 

• ... productive 

• It is the right thing! 

Combining principles 
with pragmatics in the 
first year is 
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Design Principles

Peda. IDESeries of PLs

5 - 10 Years of Development Work
from 3 to 20 people

Good Luck!



Semester 1

Semester 2

How to Design 
Programs

How to Design 
Classes

How to Prove 
Programs (ACL2)

Discrete

Programming Mathematics



Thank You!

Matthew Flatt
Robert Findler
Shriram Krishnamurthi
Eli Barzilay
John Clements
Kathi Fisler
Kathy Gray 
Emmanuel Schanzer
Viera Proulx
and many, many more 


