Systematic Program Design
(for Freshmen)

Matthias Felleisen (PLT)
Northeastern University, Boston

The Problem:

Computer Sciencel (and 2)

® in 1978 @ Karlsruhe (Technische Universitat):
variables, assignments, printing, arrays, loops,
procedures, classes and methods

® in 1978 @ Karlsruhe (Technische Universitat):
variables, assignments, printing, arrays, loops,
procedures, classes and methods

® in 2007 @ Anywhere (College, University):
variables, assignments, printing, arrays, loops,
procedures, classes and methods, ...

® in 1978 @ Karlsruhe (Technische Universitat):
variables, assignments, printing, arrays, loops,
procedures, classes and methods

® in 2007 @ Anywhere (College, University):
variables, assignments, printing, arrays, loops,
procedures, classes and methods, ...

® ...and perhaps interfaces and inheritance.

Algol 60/Simula 67
Pascal

C

Scheme

C++
Eiffel
Haskell

Java

Alice/]ava

Algol 60/Simula 67

Pascal 8 languages, 30 years:

C

Scheme

C++
Eiffel
Haskell
Java

Alice/]ava

Algol 60/Simula 67
Pascal

C

Scheme

C++

Eiffel

Haskell

Java

Alice/Java

8 languages, 30 years:

Are we really just a
fashion industry?

Algol 60/Simula 67
Pascal

C

Scheme

C++

Eiffel

Haskell

Java

Alic<java

8 languag=s.” 30 years:

Are we really just a
fashion industry?

® Programming: how do
| create programs?

® Programming: how do @ Systematic Design
| create programs!? (problem solving)

® Programming: how do @ Systematic Design
| create programs!? (problem solving)

...and a little bit of fun

(define (image t)
(place-image & 50 (- 100 (+ t 10))
(empty-scene 100 100)))

;; run program run:
(run-simulation image)

(define (image t)
(place-image & 50 (- 100 (+ t 10))
(empty-scene 100 100)))

;; run program run:
(run-simulation image)

A Shape is one of:
-- a square;
-- a disk; or

-- one shape on top of another.

Design a program that determines whether
a mouse click is inside some given Shape.

|#

A Shape is one of:
-- a square;
-- a disk; or

-- one shape on top of another.

Design a program that determines whether
a mouse click is inside some given Shape.

|#

The Context:

Northeastern University
and American College Culture

® CS I:160-200 students, CS 2: ~100-120

® three lectures/week @ 55-65 mins each

® one lab session/week @ 90 mins

CS 1: 160-200 students, CS 2: ~100-120
three lectures/week @ 55-65 mins each

one lab session/week @ 90 mins

two office hours/week/instructor

|0 office hours/teaching assistants

20 office hours/tutors, |10 grading hours/tutor

staff meeting: 90 mins/week; train the
assistants; discuss students “with hope”™

® one homework set/week

® goal |: prepare exam, weight ~20%

® goal 2: pair programming

® 3-10 problems; 2-4 are graded, randomly
® one quiz/meeting:
® goal: reinforce daily learning (“keep up”)
® |/4is graded, randomly
® two 3-hour exams/semester
® goal: systematic design, not outcome

® week 5 and week 10/1 |

® Homework projects:

® goal: revisit projects across 4 weeks

® hmwk 5:interactive graphical game

nmwk 7: ... fix in response to criticism

nmwk 9: ... use existing abstractions, create

® Homework projects:
goal: revisit projects across 4 weeks
nmwk 5: interactive graphical game

nmwk 7: ... fix in response to criticism

nmwk 9: ... use existing abstractions, create

® Northeastern is a co-op university

® goal: prepare students for 3rd sem co-op

® teach principles

® ... and apply them to something they might
encounter in industry

How to Design Programs
- systematic design
- model of computation
- functions
- APlIs/frameworks

Discrete Mathematics
- sets
relations & functions
combinatorics
In progr. context

How to Design Classes
- systematic design
- classes/methods
- standard API

How to Prove Programs
- ideas to conjectures
- Ist-order logic

- ... with theorem proving
- ...about HtDP code

Systematic Design:

The Recipe and Its Dimensions

What is Systematic Program Design

® step by step: from problems to solutions

® iterative refinement: from core to full product

What is Systematic Program Design

® step by step: from problems to solutions

® iterative refinement: from core to full product

® problem description plus choice of strategy
produces “normalized” results (alpha, beta, tests)

What is Systematic Program Design

step by step: from problems to solutions

iterative refinement: from core to full product

problem description plus choice of strategy
produces “normalized” results (alpha, beta, tests)

small changes to problem lead to small changes
in solutions in a predictable manner

atomic

enumer.

structs

recurs.

mut. rec.

data def

purpose

examples

template

code!

Structural Design

enumer. |structs | hier. recurs.

data def

purpose
describe the classes
examples of“problem” data;

template illustrate with examples

code!

Structursz

data def

purpose

examples

state a “‘contract”’ aka
type or method signature;

summarize purpose of
program/function concisely

template

code!

Structural Design

data def

purpose

examples

template

formulate functional aka
behavioral examples for
the function/method

code!

Structural Design

enumer. | structs | hier. |unionl recurs.|mut. rec.

data def

purpose

take inventory of all the

examples

template

code!

information you have

about the function in the
form of a “function template”
or “function organization”

Structural Design

enumer. | structs | hier. |unionl recurs.|mut. rec.

data def

purpose

does the data def. identify

examples

template

code!

distinct sub-classes? how many!?
- do any of the sub-classes
describe compound data!’
- do any of the clauses of the
data def create self-referencg

Structural Design

enumer. |structs | hier. |union| recurs.

data def

purpose

examples

now code; that is, fill in the

template

code!

gaps in the template with
functions that combine the
values of the expressions

Structural Design

enumer. |structs | hier. |union| recurs.

data def

purpose
deal with non-rec conditions

examples - then remind yourself (using
the purpose statement and
template examples) what the existing
expressions compute

code! - combine those computation;
possibly “wishing” for mogzg

Structural Design

enumer. |structs | hier. recurs.

data def

purpose

examples

template now turn examples into
tests and run the test suite

code!

“program editing”

data def

purpose

examples

template

code!

data def

purpose

examples

template

code!

® strong induction

® “circularity” of data; sharing

® “poverty”’ of interface; efficiency

iterative refinement: programmers are scientists

File = String
Dir = [Listof (U File Dir)]

iterative refinement: programmers are scientists

File = String
Dir = [Listof (U File Dir)]

~

File = String
' Dir = (make-dir String [Listof (U File Dir)])

iterative refinement: programmers are scientists

File = String
Dir = [Listof (U File Dir)]

~

File = String
' Dir = (make-dir String [Listof (U File Dir)])

~

File = (make-file String Nat [Listof Char)
Dir = (make-dir String [Listof (U File Dir)])

Why Systematic Program Design

help students overcome an obstacle

train teaching assistant to intervene properly

empower students to learn on their own

grading “perfect” solutions

Why Systematic Program Design

® if the design strategy is transparent, program
understanding and maintenance are easy

® small changes to problems are common;
everyone should be able to fix them

® iterative design has become known as “agile”
programming

Systematic Design:

Some Examples

(define (image t)
(place-image £ 50 (- 100 (+ t 10))
(empty-scene 100 100)))

;; run program run:
(run-simulation image)

How far did the horse buggy travel in one hour,
if it leaves Pittsburgh at 10am on Monday, going
|0 miles per hour?

How far did the horse buggy travel in one hour,
if it leaves Pittsburgh at 10am on Monday, going
|0 miles per hour?

(define (dist t) (* 10 t))

Problem:

Create a a series of images that show a
rocket (43) descending from the top of the
screen. The rocket descends at the constant
rate of |0 pixels/clock tick, defying all laws
of gravity.

Starting with tables:

t=..

Starting with tables:

t=..

(define (image t)
(place-image £\
50 (* 10 t)
(empty-scene 100 100)))

Starting with tables:

It’s all DOMAIN

KNOWLEDGE!

detine (Image
(place-image A

50 (* 10 t)

(empty-scene 100 100)))

To make this fun:

(run-simulation f)

(run-simulation f)

applies the function f to 0, |, 2, 3, ...

(f0),(f 1), (f 2), ... produces images ...

run-simulation displays these images
at the rate of 28 per second (which
we call a “clock tick™)

More fun:

(big-bang wO ...
;; creates the world, making w0 the initial world
(on-tick tock) ; installs a “clock tick” handler

(on-key clack) ; installs a keyboard event handler
(on-mouse click) ; installs a mouse event handler
(on-draw render) ; helps render the world as a scene

)

A Shape is one of:
-- a square;
-- a disk; or

-- one shape on top of another.

Design a program that determines whether
a mouse click is inside some given Shape.

|#

efine-struct disk (radius center))
efine-struct square (size ul))
efine-struct over (top bot))

#| A Shape is one of:

Interpretation:
(make-disk r p) is a green disk with center p ...

|#

(define-struct disk (radius center))
(define-struct square (size ul))
(define-struct over (sl s2))

#| A Shape is one of:
-- (make-square Nat Posn)
-- (make-disk Nat Posn)
-- (make-over Shape Shape)

efine ¢ (make-disk 20 (make-posn 40 50)))
efine s (make-square 30 (make-posn 40 60)))
efine t (make-over s c))

efine q (make-over t (make-disk 15 ...)))

;; Shape Posn -> Boolean
;; is position p contained in this shape s!

(define (in? s p) false)

efine ¢ (make-disk 20 (make-posn 40 50)))
efine s (make-square 30 (make-posn 40 60)))
efine t (make-over s c))

;; Shape Posn -> Boolean

;; does this shape s contain position p?

(define (in? s p) false)

efine ¢ (make-disk 20 (make-posn 40 50)))
efine s (make-square 30 (make-posn 40 60)))
efine t (make-over s c))

;; Shape Posn -> Boolean

;; does this shape s contain position p?

(define (in? s p) false)

#| A Shape is one of:
-- (make-square Nat Posn)
-- (make-disk Nat Posn)
-- (make-over Shape Shape)

|#

(define (in? s p)

#| A Shape is one of:
-- (make-square Nat Posn)
-- (make-disk Nat Posn)
-- (make-over Shape Shape)

|#

(define (in? s p)
(cond

[
[

#| A Shape is one of:
-- Square
-- Disk
-- (make-over Shape Shape)

|#

(define (in? s p)
(cond
[(square! s) ...]
[(disk? s) ...]
[(over! s)

#| A Shape is one of:
-- Square
-- Disk
-- (make-over

|#

(define (in? s p)
(cond
[(square! s) ...]
[(disk? s) ...]
[(over!s) ... (over-top s)
(over-bottom s) p) ...]))

(check-expect (in? (make-disk ...) (make-posn ..)) ...)

(define (in? s p)
(cond

[(square? s)]
[(disk? s)]

[(over? s) ...(in? (over-top s) p)
... (in? (over-bottom s) p) ...]))

(check-expect (in? (make-disk ...) (make-posn ..)) ...)

(define (in? s {
(cond

[(square! s’
[(disk? s)
[(over? s) ...(in? (over-top s) p)
... (in? (over-bottom s) p) ...]))

(define (in? s p)
(cond

[(square? s) (in-square! s p)]
[(disk? s) (in-disk? s p)]
[(over! s)

.. (in? (over-bottom s) p) ...]))

(define (in? s p)
(cond

[(square!? s) (in-sauare? s p)]
[(disk? s)
[(over! s)

.. (in? (over-bottom s) p) ...]))

(define (in? s p)
(cond

[(square? s) (in-square! s p)]
[(disk? s) (in-disk? s p)]
[(over! s)

(define (in? s p)
(cond

[(square? s) (in-square! s p)]
[(disk? s) (in-disk? s p)]
[(over! s) (in? (over-top s) p)
(in? (over-bottom s) p))]))

(define (in? s p)
(cond

[(square? s) (ir
[(disk? s) (i
[(over? s) (e WY TLep 9)
(in? (over-bottom s) p))]))

Untitled 2 ¥ (define ..)¥ Save [

[rocket.ss r hit—-or-miss.ss F # Lntitled 2]

L —
i; Hit or Miss

{define-struct disk (radius center))

(check-expe {define-struct square (size ul))
(check-exp¢

{define-struct over (sl s2))

:+ Examples

oo {define ¢ (make-disk 28 (make-posn 48 5837

_ {define s (make-square 38 (make-posn 48 &68)))
(ChECk expe (define t (make-over s c))

(Check-equ {define g (make-over t (make-disk 15 {make-posn 68 6830700

»+ Shape Posn -> Boolean
-

LS p contdined 1n thls Ss¢

{check-expect (in? ¢ (make-posn 45 45)) true)
{check-expect (in? ¢ (make-posn 188 188)) false)

{define (in? s p)
{cond
[(disk? s) (in-disk? s p)]
I(square? s)@{(in-square? s pi
kM (or (in? (over-s1 s) p) (in? (over-s2 s) p))IBE

(define-struct world (sh ms))
;; World = (make-posn Shape Posn)
;; interpretation: the displayed shape and the last mouse click

(big-bang
(make-world q (make-posn 0 0))
(on-mouse (lambda (w x y me)
(if (symbol=? 'button-down me)
(make-world (world-sh w) (make-posn x y))
w)))
(on-draw (lambda (w)
(scenetdot (world-ms w)
(scenetshape (empty-scene 200 200)
(world-sh w))))))

e Java:start with a class diagram
interface [Shape
class(es) Disk, Square, Over extends IShape
boolean in(Posn p) // does this shape contain p?

follow the arrows, don’t chase beyond neighbors

.. yields true OO designs, aka “design patterns”

... though clashes with bad OOPL implementations

Evaluation:

Students, Colleagues, Industry

HtDP: |3 years, HtDC: 4 years

What we also have:
the DrScheme IDE

teaching languages

text book (MIT Press)

HOW TO DESIGN PROGRAMS

An Introduction fo Pregramming and Computing

adapted to Java

connected to logical reasoning

e HtD{P|C}: hand-and-overs to other instructors

® HtDP evaluations:

® comparative test at high school

® evaluation wrt Rice C++ course(s)

e HtDP/C at NEU

® Bootcamp for middle schools

e HtD{P|C}: hand-and-overs to other instructors

® HtDP evaluations:

® comparative test at high school

® evaluation wrt Rice C++ course(s)

e HtDP/C at NEU

® Bootcamp for middle schools

Alief School District:Year |

Same Teacher

Alief School District:Year |

Class Clasg (Class
I 2 3

Same Teacher

Same 2 Curricula

Class Clasg (Class
I 2 3

Same Teacher

Same 2 Curricula

Class Clasg [Clas
I 2 3

Same Teacher

® All students: HtDP
Same 2 Curricula preferred by ~70%

Class Clasg [Class
I 2 3

Same Teacher

® All students: HtDP
Same 2 Curricula preferred by ~70%

Clasg Class [Class ® The more C++, the
I 2 3 more they prefer HtDP

Same Teacher

® All students: HtDP
Same 2 Curricula preferred by ~70%

Clasg Class [Class ® The more C++,the
| 2 3 more they prefer HtDP

Same Teacher ® Female students: prefer

HtDP by a ratio over
4:1

® 300 high school teachers over 4 years

® when implemented, significant AP improvement

® 90-95%:"“this approach changed my mind”,
best CS introduction ever

Rice:Year |

Rice Engineering Freshmen

HtDP C/C++ Intro

1:S/CE/Eng fE/EE/Eng

Ece Engineering Freshmen

CS 212: OO Data Structures in C++

1

C/C++ Intro

HtDP
1:S/CE/Eng fE/EE/Eng

Rice Engineering Freshmen

Rice:Year |

CS 212: OO Data Structures in C++

1

C/C++ Intro

HtDP
1tS/CE/Eng fE/EE/Eng

Rice Engineering Freshmen

HtDP Students routinely outperform C/C+
+ students on C++

Before:
e conventional |-year OOP (C++,Java)
* co-op students: 2/3 in “tech support”

e co-op employers routinely complain
e down-stream faculty has given up
e faculty retreats on “programming skills”

After:
* systematic program design (+ models)
* co-op students: 2/3 and more in programming

e ...and “better” employers (MS, Google, Amazon)
e co-op employers praise UGs, complain about MS
e down-stream faculty routinely praise skills (loops)
e graduate dean wishes to “lift” curriculum to MS

Bootstrap:

US School System

High School
(9-12)

Middle School
(>-8)
Elementary School
(K, |- 4)

Bootstrap:

US School System

High School Bootstrap:
(9-12) ¢ after-school

Middle School * citizen teachers
(5-8) e “poor” districts
Elementary School * 9 weekly meetings
(K, |- 4) * the “math effect”

® Observation |: high school teachers don'’t
change their mind based on evaluations

® Observation 2: college instructors don’t
change their mind based on evaluations

® Observation 3: colleagues at universities
insist on fashions, regardless of evaluations

® Observation |: high school teachers don'’t
change their mind based on evaluations

® Observation 2: college instructors don’t
change their mind based on evaluations

® Observation 3: colleagues at universities
insist on fashions, regardless of evaluations

Conclusions, Future

Combining principles
with pragmatics in the
first year is

® .. feasible

Combining principles
with pragmatics in the
first year is

® .. feasible

Combining principles
with pragmatics in the
first year is

® .. cffective

® .. feasible

Combining principles
with pragmatics in the
first year is

® ... cffective

® .. productive

Combining principles ... feasible

with pragmatics in the
first year is

® ... cffective

® .. productive

® It is the r2ght thing!

Design Principles

Design Principles

Series of PLs

Design Principles

Series of PLs

Peda. IDE

Design Principles

AN

Series of PLs

Peda. IDE

Design Principles

5 - 10Yegrs of Development Work
om 3 to 20 people

Series of PLs

Peda. IDE

Design Principles

Good Luck!

5 - 10Yegrs of Development Work
om 3 to 20 people

Series of PLs

Peda. IDE

Programming

Mathematics

Semester |

ow to Design
Programs

Discrete

Semester 2

ow to Design
Classes

Thank You!

Matthew Flatt

Robert Findler
Shriram Krishnamurthi
Eli Barzilay

John Clements

Kathi Fisler

Kathy Gray

Emmanuel Schanzer
Viera Proulx

and many, many more

