An operational semantics for RRS Scheme

Jacob Matthews

University of Chicago
jacobm@cs.uchicago.edu

Abstract

This paper presents an operational semantics for the core o

Scheme. Our specification improves over the existiﬁ@lR de-
notational specification in four ways. First, it is more cdete,
since it containgval quote, anddynamic-wind Second, it models
multiple values in a way that does not require changes tdateit
parts of the language. Third, it provides a more faithful edoaf
Scheme’s undefined order of evaluation. Finally, it is exaisie,
because itis encoded as a program in PLT Redex, a domaiifispec
language for writing operational semantics. The execatapkc-
ification allows others to experiment with our specificatiamd
allows us to build a specification test suite, which improves
confidence that our system is a faithful model of Scheme.

In addition to contributing a specification of Scheme, traper
presents several novel modeling techniques for Felleisel-ktyle

rewriting semantics that we discovered while developing?ﬁRS
Scheme semantics. All are applicable to a wider range oflenab

Robert Bruce Findler

University of Chicago
robby@cs.uchicago.edu

suited for modeling programming languages with nondeteistic

fand nonconfluent behavior. We make important use of nondeter

minism in our model, as we will explain in section 2.

As a side benefit of using a small-step operational encodiag,
can use PLT Redex [17], a domain-specific language for contex
sensitive term-rewriting systems, to give a directly exable op-
erational encoding for our model. PLT Redex provides a gcaghh
browser for exploring reduction graphs and allows us to tadin
a large test suite of terms and their expected normal foratsii
can run whenever we change any reduction rules. This testisui
creases our confidence that our model is a faithful reprasentof
Scheme.

While writing our model, we developed new techniques for
modeling some of Scheme’s features. In the rest of our paper w
first introduce those techniques in isolation to explain madels
for particular Scheme features, and then combine them istn-a
gle unified model. In section 2 we show how to use nondetesmini
to model Scheme’s unspecified application order; in se@ioe

than the specific uses we have for them, and the fact that they show a novel technique for modeling multiple return valiesgc-

combine seamlessly in our full RS model shows that they scale
to real languages.

1. Introduction

The Reviset Report on the Algorithmic Language Scheme [15],
R°RS, provides an informal, English specification of Schem# an

tion 4 we give a model foquote andevat and in section 5 we give
a model forcall/ccin the presence afynamic-windFinally in sec-
tion 6 we combine all those models along with several othaemo
straightforward featuresf, consand cons-cell mutation, variable-
arity proceduresapply, and an object-identity-sensitive notion of
eqv?equality.

We will assume the reader has a basic familiarity with cantex

a denotational model of a core Scheme language. The denota-sensitive reduction semantics. Readers unfamiliar withgyistem

tional specification is more precise than the informal sfmation,
but is also incomplete with respect to it. For instance, tirenél
specification does not present the top-level mentionedutitrout
the informal specification, and is missing key procedure$ aas
dynamic-windand eval whose inclusion could have a significant
impact on the formalism. While that is not necessarily a (b
— the measure of a model is not its completeness but its akilit
clearly and accurately explain its subject — Gasbichled’stra-
cent explanation of the difficulties involving dynamic cexis and
threads [12], for instance, demonstrate that the formalehigdn-
sufficient for some important questions.

In this paper we give a new treatment of theRS formal se-
mantics that models more of the language described in thenia
semantics section than the formal semantics section in BRSR
Scheme document does. Rather than extending the denatiagén
mantics with extra constructs, we present an alternatefsgadion
as a small-step operational semantics. We do this for twomeg-
sons. First, to make the semantics natively executableatpeal
semantics are much more amenable to direct execution then de
tational semantics. Second, to allow for nondeterminisohraon-
confluence: small-step operational semantics are paatigukell-

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesarmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

Sixth Workshop on Scheme and Functional Programmir8eptember 24, 2005,
Tallinn, Estonia.
Copyright(© 2005 Jacob Matthews and Robert Bruce Findler.

41

may wish to consult Felleisen and Flatt's monograph [5] oigir

and Felleisen [24] for a thorough introduction or our prexsevork

with Flatt and Felleisen [17] for a somewhat lighter one. \Wewdd

also emphasize before we proceed that this semanticsestiles

out many important Scheme features — among them the numeric
tower, the top-level environment, and macros — but that itlet®
more features than the Report’s formal semantics does andris
suitable for extension.

2. Unspecified application order

In evaluating a procedure call, the’lRS document deliberately
leaves unspecified the order in which arguments are evallulade
section 4.1.3 specifies that

the effect of any concurrent evaluation of the operator and
operand expressions is constrained to be consistent with
somesequential order of evaluation. The order of evalua-
tion may be chosen differently for each procedure call.

In the formal semantics section, the authors explain howriadel
this ambiguity:

[w]e mimic [the order of evaluation] by applying arbitrary
permutationgpermuteand unpermute . . to the arguments
in a call before and after they are evaluated. This is notejuit

p = (store((xVv)---)e) C = (v---Ce---)|(set!xC) | (beginCee)|
e u= (ee--)|(set'xe | (beginee--)|v X = identifiers, store locations for mutable bindings
v = (lambda(x---)e)|n n = numbers
(store((x1 v1) ---) C[((lambda (xz - --) € v2 - --)]) — (store((xy v1)--- (x5 V) ---) C[e[X} - - -/ X2 - - -]]) (MA PP
(#xo = #vo, eachx fresh)
(store((xy v1) - --) C[((lambda(xz ---) € va ---)]) — error: wrong number of arguments (MI®ERR)
(#xo # #v2)
(store ((x1 v1) - -+ (x V) (x2 Vo) - - -) C(set!x V)]) — (store((x1 v1) -+ (x V) (x2 vo)- - -) C[0]) (MSET)
(store (X1 v1) - - - (X V) (X2 v2) - -) C[X]) — (store((x1 v1) - - - (X V) (X2 v2) - - -) C[V]) (ML ookup)
(store((x V) - -) C[(beginv e e --)]) — (store((xV) - - -) C[(begine; e - -)]) (MSEQ)
(store((x V) - -) C[(begine)]) — (store((xV) ---) C[€]) (MTRIVSEQ)
(store ((x V) - -) C[(— n)]) — (store((xV) ---) C[l-n']) (MNEG)

Figure 1. Core Scheme with mutation

right since it suggests, incorrectly, that the order of exal
tion is constant throughout a program.. [section 7.2]

In this section we present an operational technique thaticep
the intended semantics more faithfully. We begin by conside
a core Scheme with arbitrary arity procedursst!, numbers, and
negation, but with a fixed left-to-right order of evaluatifor ap-
plications, as shown in figure 1. It is a minor variation oflEislen
and Hieb'sAs [6]. A program consists of a store that associates
variable names to values and an expression, where expressi®
built up of numbers, arbitrary-arity lambda terms and aygtions,
set!, andbeginexpressions, and a built-in negation operator. iMA
gives the rule for application of a procedure to fully-ewskd ar-
guments: make one fresh identifiérfor each formal paramete,
introduce a new binding in the store for eachassociating it with
the corresponding argumewtin the application, and then rewrite
the application as the procedure’s body with each occuerefian
X; rewritten into the corresponding (in this figure as in all fig-
ures in this paper, we will use vertically-centered ellpse to
indicate any number of occurences, including zero, of tleequl-
ing element). MAPERR gives the rule for procedures applied to
the wrong number of arguments: rewrite the term in its etytite
an error message, which halts the program immediately lsecau
it abandons the application’s original context. EhiSrewrites to
the constant 0 but also replaces the value associated weititn
identifier in the store with the given replacement. (We clectms
haveset! return the constant O in this semantics as a “quick and
dirty” unique value; in the examples that follow O never agusan
any program term except as the result of assignment.pbHuP
replaces an identifier with its associated value in the sidren
that value becomes necessarg.(when it appears as a redex in an
evaluation context). M&Q drops the first subexpression inba-
gin when there are more expressions to evaluate, an&M3EQ
drops thebeginwhen there is only one expression to evaluate. The
last rule, MNEG, simply negates its argument (the notationindi-
cates the syntactic representation corresponding to thieemeati-
cal numbem).

The order of evaluation is determined by the grammar for-eval
uation contexts@). The first production of the grammar specifies
that evaluation of a sub-expression of an application oakes
place when all of the sub-expressions to its left are valaebdve
been reduced to values). If we replace that first productitimtivis
one:

Cu=(e---Cv--9)]...

the semantics would specify a right-to-left order instead.

Either of these choices results in a system with unique decom
position. That is, each term can only be split into an evéduaton-
text and a reducible sub-expression in one way (unless ttigks

42

or an answer). Accordingly, there is at most one way to rednge
expression.

To model a language with unspecified order of operations in-
stead, we can use a reduction system with non-unique de@mpo
tion to model the choice. We might be tempted to use this difini
of evaluation contexts:

Ci=(e---Ce--9)]...

Since this definition allows the hole to appear in any subesgion
of an application, this simple program that negates 1, esgitand
then applies a trivial procedure to the results

((lambda (xy) y) (- 1) (- 2))

can be split into an evaluation context with eitherX) or (— 2) as
the reducible expression.

At first glance, this appears to be a faithful model OIRS
Scheme. It is not. Consider this application of te&t! expressions
in a store binding to 1.

(store ((x 1)
((set!x (— x))
(set!x (= x))))

In Scheme, this program should always reduce to the apiolicat

of zero to zero withx set tol in the store (and then get stuck).
According to RRS, no matter which of the application’s subterms
is reduced first, the result should be thaits negated twice. If

we just modify evaluation contexts as above, however, wenall
other interleavings. The problem is that that definitionvafleation
contexts would allow a different argument of the same apfitio

to take one step of computation every step of the way, which ma
produce an outcome that could not be reached by any sequentia
ordering.

We discovered this problem while experimenting with that re
duction system in PLT Redex. We encoded the erroneous lieduct
system in PLT Redex and automatically generated the remtucti
sequence for the above term, shown in figure 2. The first term is
shown on the left. The top-most and the bottom-most path®€or
spond to the two sequential orderings and result in the pistpee.

In the middle section, the two assignments are interleaesd|ting
in —1 being left in the store.

With that in mind, we can design a more sophisticated strat-
egy that captures unspecified evaluation order but onlyvallee-
quential orderings. Figure 3 shows the necessary revisgosre
Scheme to supportﬁiRS-ster procedure applications (each re-
places the appropriate rule from figure 1 — the other ruletan t
figure are unchanged). The basic idea is to use non-detatiini
choice to pick a sub-expression to reduce only when we hava-no
ready committed to reducing some other subexpression.Hieva

(store ((x 1)) (store ((x 1)) (store ((x -1)) (store ((x -1)) (store ((x -1))

(Csett x (- 1) ‘> ((sett x -1) -> (0 » (0 —> (0
(set x (= M) (sett x (-) (sett x (-) (st x (- -1)) (setl x 1))
% (store ((x -1)) (store ((x -1))
((sett x (- 1) ((set! x -1)
(store ((x 1)) 0)) > 0))
((sett x -1)
5o (st x (1)) Y
(store ((x 1)) (store ((x 1)) (store ((x 1)) (store ((x -1)) (store ((x 1))
((setl x (- x)) ((sett x (- 1) ((sett x -1) (0 (0
(sett x (- x)) (setl x (- 1)) R —" A (setl x -1)) 0
» (store ((x 1)) \ o 2
(sett x (- 1) A—\ ﬁ
(setl x -1)) (store ((x -1)) N
U — (0 R
(sett x (- 1)) | (S‘(o(;e (1)
(setl x -1))
(store ((x 1)) (store ((x 1)) (store ((x -1)) (store ((x -1)) (store ((x -1))
(Csett x (- x) |[—> ((setl x (- x) |—3>> ((setl x (- x)) 7
(st x (-) PO, o —>> ((O;s)et! x (- 1) |3 ((O)S)et[x 1)

Figure 2. Interleavings possible with an erroneous unspecifiediegiidn-order model

inert == v°|e
C = (inert---C°inert---)|...
(store(---) C[(inert- - - e inert- - -)]) — (store(---) C[(inert--- €°inert--.)]) (UM ARK)
(store(---) C[((lambda(x---)e)° v --)]) — (store(--- (X' v)---) Cle[X ---/x--]]) (VAPP

(#x = #v, eachx’ fresh)
(store (- --) C[(—° 'n'°)]) — (store(---) C[l-nl]) (UNEG)

Figure 3. Revisions to core Scheme to support unspecified applicatider

that effect, we introduce the non-terminiaért and the notion of a It will either will return eitherl or 2, depending on the order of
marked expression, denoted with thesuperscript. (These marks evaluation. This is the way we want it; the model’s nonconftee
are not an extension to the general term-rewriting framkwer reflects the underspecification oPRS Scheme rather than a tech-
e’ andC® are just alternate typesettings ohdrk €) and nark nical bug in our model. It does, however, always make pragres
C).) Marks identify chosen expressions: only marked exfoess e formalize this with the following theorem statement:

may be reduced, and only one reducible marked expression may

appear in any application at one time. Tihert production stands THEOREM2.1. For any closed programp in the language of fig-

for terms in which evaluation may not occue., unmarked ex- ure 3, eitherp — p’, wherep’ is also closedp — e wheree is
pressions (those expressions we have not tried to evalegtaryd some error indicator, op is of the form §tore ((x v) - - -) v).

marked values (those expressions we have already finisded-re

ing). We add the UMRK reduction rule that marks an arbitrary Proof is contained in the first author's master’s thesis.[16]
unmarked expression in an application on the conditionefaty This technique has other uses besides giving semanticsifor u
other expression is inert, and we modify the MAand MNEG specified application evaluation orders. In general, itssful for
rules rules to apply only to fully-marked applications, teing modeling any kind of delimited nondeterminism, where eatibn
the UAPPand UNEG rules. may proceed arbitrarily but only at certain points in a peogr This

Figure 4 (also generated by PLT Redex) shows how our new is useful for modeling unspecified behaviors and for compiex-
system evaluates the term from figure 2. The initial term appe deterministic features such as threads.
in the center on the left. That term is an application, so thst fi
redu_ction either ma}rks_the first sub-expr_ession or the skckbn 3. Multiple return values
the first subexpression is marked, evaluation continuesidowthe
bottom of the figure, over to the right and back up to the mididle R°RS Scheme provides a facility for expressions to evaluate to

the second is marked, evaluation proceeds up, over, anddaok multiple or no values rather than just a single value. Thegdare
middle. In both paths there are a few other application esgioas valuesbuilds multiple values andall-with-valuesaccepts multiple
to evaluate, leading to smaller separations. Eventudllypfahe values. Unlike tuples in SML and Haskell, multiple values aot
terms join back together and the final result in the storg, ias themselves values. For example, this program

shown in the center on the right.

One should not take that example to mean that this language ha (define (f X) (values(+ x X) (x x X))

any kind of confluence property, however. Consider this mog Ege(?g;(g XYY)
((lambda (choicg produces an error, since procedure application expects afats
((lambda (x y) choicg arguments to be a single value (and the resutft isftwo values).
(settchoice) Instead, the programmer must us#l-with-valuesto catch multi-
(set!choice 2)) ple values. It expects a thunk as its first argument, appithunk,
0) catches any number of values that thunk produces, and apipéim

43

(store ((x 1)) (store ((x -1))
((set! x (- x) |—>> ((sett x (-

(sett x -1)°)) 0°))

(store ((x 1))
((sett x (- x))
(sett x (-2 1°)) °)

yd N
(store ((x 1))

((sett x (- x)) ((sett x (- x)
(sett x (= x°)) °) (set x (- 1°) °))

A)

(store ((x 1))

(store ((x -1))
X)) |—> ((sett x (- x))°
0°))

(store ((x -1)) (store ((x -1))
((sett x (- x)° ((sett x (- x°)°
0°)) 0°))

(store ((x -1)) (store ((x -1))
((sett x (- x°)° ((sett x (- -1°))°
0°)) 0%))

N K

(store ((x -1))

(store ((x 1)) (store ((x 1))
((sett x (- x)) ((setl x (- x)) ((sett x (- -1°)) °
(sett x (~° x) °) (setl x (- x°)) °) 0%))
AN b Y
(store ((x 1)) (store ((x -1))
((sett x (- x)) ((sett x 1)°
(store ((x 1) 3> (sett x (- X)°) o) T (store ((x 1)
((sett x (- x)) (0°
(set! x (- x)) |~ (store ((x 1)) (store ((x 1)) |—F7 0°))
((sett x (- x))° (0°
(setl x (- x)) (setl x 1)°))
(store ((x 1)) (store ((x 1)) (store ((x -1))
((sett x (-° x))° ((sett x (- x°))° (0°
(sett x (- x)) (sett x (- X)) (setl x (= -1°)) °)
(store ((x 1)) (store ((x 1)) (storf (x -1)) (store ((x -1))
((sett x (-° x°))° ((sett x (- 1°) ° (o (0°
(setl x (- x)) (setl x (- x)) (set! x4§-° X)) °)) (setl x (- -1°)) %))
(store ((x 1)) (store ((x -1)) (store ((x -1))
((sett x (-=° 1°)) ° (0° (0°
(sett x (- x))) (setl x (-° x)) °) (setl x (- x°)) °))
(store ((x 1)) (store ((x -1)) (store ((x -1))
((sett x -1)° —> (0 —>> (0°
(sett x (- x)) (set! x (- x))) (setl x (- x)) °))

Figure 4. Evaluation in the unsp

to its second argument. So, a programmer could suplsesults
to g like this:

(call-with-valueqlambda () (f 3)) g)

In addition, there is no difference betweealuesapplied to a single
argument and that argument by itself, gq\alues ¢ (values 9) is
the same ag)(6 9).

To model multiple values, PRS Scheme’s formal semantics
models continuations as functions from an arbitrary nunobbeal-
ues to a final answer. The informal semantics says that “¢xoep
continuations created with treall-with-valuesprocedure, all con-
tinuations take exactly one value” [15, section 6.4]. Tharfal se-
mantics reflects this by checking the opposite property.vierye
context that expects a single value, it uses a helper fumciogle
to ensure that only a single value appears. This indireatichg
impacts the entire semantics: it requires every contionat ac-
cept any number of arguments initially and requires a cadirigle
at every point where a continuation would be restricted.

Our semantic model captures the difference between cantext
that accept multiple values and contexts that reject maltiplues

44

ecified-application-order model

directly. Our strategy is distilled in figure 5. That figurentains

a pure core Scheme extended withlues and apply-values a
syntactic form that has as its operands an expression that mu
evaluate to a procedure and another expression that mayagval
to any number of values, and calls the procedure with tholsesa
as arguments. We usg@ply-valuesin this section rather tharall-
with-valuesbecause the resulting model is clearer and lapibly-
valuesandcall-with-valuescan be defined simply in terms of each

other in RRS Scheme:

(define (call-with-values thunk)f
(apply-valuesf (thunk))

(define-syntax apply-values
(syntax-rules()
[(-f vs-exp)
(call-with-valueglambda () vs-expj} f)]))

Our model uses a modest addition to the standard reduction-
semantics formalism. We extend the notation so that holee ha
names (written as subscripts) but otherwise behave as watham

e

(ee---) | x|v| (apply-valuese §

\% z (lambda (x - - -) €) | values
C = [Je|(v---Cose---) | (apply-valuesCs €) | (apply-valuesv C,)
Co == []o|C
c. == [l]c
Co[((lambda(x--) e v--)]e — Colelx---I--] (VA PP
(#v = #x)
Co[((lambda (x---) € v---)]e — error: wrong number of arguments (\#®ERR)
(#v # #x)
Co[(apply-valuesv; (valuesy ---))]e — Co[(viva---)] (VA PPVALS)
Co[V]« — Co[(valuesV] (VPROMOTE)
Co[(values Y]o — GCol[V] (VDEMOTE)
Co[(values v -)]0 — error: expected a single value (VMOTEERR)

(W #1)

Figure 5. Pure core Scheme with multiple values

holes do. The context-matching syntax is now annotated with
names as well, restricting legal decompositions to thoseravthe
hole has the same name.

In figure 5 we use this feature to give three distinct names to
holes, indicated with subscripts], indicates a hole in which any
expression should reduce to an element,df]. indicates a hole
in which any expression should reduce t@l(es v--), and|]»
indicates a hole in which either result is acceptable. Thezehree
parallel context nonterminals. The cont€t produces an element
of v, C. produces¥yalues v- - -), andC might produce either.

Since each subexpression of an application is expectedto pr
duce a single value, the evaluation context inside an egjwic is
C,. For the same reason, the evaluation context for the firgbsub
pression obpply-valuesis C,. The evaluation context for the sec-
ond subexpression, however(ds because it is expected to produce
multiple values.

Since procedure applications (defined by theP#@and VAPP-
ERR reductions) andapply-values uses (defined by the \i2p-
VALS reduction) may produce a single value galfes v- - -), they
take place iff], holes. VRROMOTE, promotes a single valueto
(values Y. Because of the subscript * on the hole, it applies only
when multiple values are expected. ¥ROTE demotes a single
value insidevaluesto just the value, and VBMOTEERR signals an
error if valuesdoes not return exactly one value. These two rules
apply only when avaluesexpression appears where a single value
is expected. All reductions take place@j to ensure that the final
result of any program is a single value. If we wanted to alloy a
number of values as the final result of a program we could cepla
C, with C, in all rules.

To get a sense of how evaluation proceeds, consider this+edu

tion sequence:

((lambda (y) y)
(apply-values(lambda (x) (values %) 1))

((lambda (y) y)
(apply-values(lambda (x) (values %)

(values }))

((lambda (y) y)
((lambda (x) (values ¥) (values }))

((lambda (y) y)
((lambda (x) (values ¥) 1))

—

(VPROMOTE)

—

(VA PPVALS)

—

(VDEMOTE)

45

— ((lambda (y) y) (values }) (VAPP
— ((lambda (y) y) 1) (VDEMOTE)
- 1 (VAPP

First, the VRROMOTE applies and promotes 1 intedlues }
because it appears as the second argument cippty-values
expression. Then VAPVALS applies, followed by VAP. Then
the term yalues) is used as an argument to a procedure, so
VDEMOTE applies and converts it to the single vallieFinally
VA PPapplies and the result is

The erroneous expression from the beginning of this section
signals an error due to the \MMOTEERR rule.

(9 (f3))

S
— (g (values 39)
— error: expected a single value

The evaluation contexts and the three promotion and demotio
rules are all that we need to add multiple values to the laggua
Furthermore, the extension of adding names to holes does not
significantly complicate proof of progress for the systentd so we
can prove the following theorem reasonably straightfodiye1 6]:

THEOREM3.1. For any closed programp in the language of fig-
ure 5, eitherp — p’, wherep’ is also closedp — e wheree is an
error indicator, orp is of the form ¢tore ((x v) - - -) v).

Proof is contained in the first author's master’s thesis.[16]

The strategy described in this section can be used whertever t
notion of a fully-evaluated subterm is different in diffateparts
of a program. For instance, it can be used to model embedded
sublanguages such as regular-expressions, format stand<$SQL
commands, which could help develop theoretical underpgmi
for work like Herman and Meunier’s static analysis of embestid
languages [14].

4. Quote and Eval

Scheme inherits the meta-programming faciliteesl and quote
from Lisp [22]. Thequote operator turns a program into data and
the eval procedure turns that data back into a program. When
quoted, a program is represented as a list of lists and synbol
where lists represent parenthesized sequences and syrapods
sent identifiers. For examplegote (lambda(x) x)) is a three el-

e = (ee--)|v]x s = (s--)|n|sy
E = []|(v---Ee--") | (s---dotsy|(s---dotn)
v = (lambda(x---) €)| (quotesy) S = []|(e---Ss-)
| plnull|n]|prim|#t|#f | (lambda(x---) 9
| (cconsv 9 | (cconsS 9
prim = eval| cons| car | cdr | eqv? n = numbers
p = pointers sf = (p(consvy)
X = program variables sy = names of symbols
(members obyexceptlambda, quote, ccong (identifiers exceptlot)
(store(sf; - - -) E[(cons v V»)]) — (store(sf; --- (p (cons v v2))) E[p]) (ECONS)
(p fresh)
(store(sfy --- (p(cons vy, vg)) sk ---) E[(carp)]) — (store(sfy - -- (p (cons v, vy)) sk - - -) E[vq]) (ECAR)
(store(sf; --- (p(cons v, vg)) sk ---) E[(cdrp)]) — (store(sfi --- (p(consy, vy)) sk - -) E[vg]) (ECDR)
(store(sf; - - -) E[(eqv? p p]) — (store(sf; - - -) E[#1]) (EEQV1)
(store(sfy - - -) E[(eqv? p p2)]) — (store(sf; - - -) E[#f]) (EEQV2)
(p1 # p2)
(store(sf - --) E[((lambda (x---) e)v--)]) — (store(sf---)E[e[x---/v--]]) (EAPP
(#x =)
(store(sf - -) J(quote sexp sexp - - -)] — (store(sf - --) §(cconssexp (quote sexp)]) (EQUOTESEQ)
(store (sf - - -) J(quote ()] — (store(sf---) gnull]) (EQUOTENULL)
(store(sf - -) §(quote n)] — (store(sf---) gn]) (EQUOTENUM)
(store (sf - - -) J(cconsv; va]) — (store(sf--- (p(cons v v2))) Spl) (EQUOTEPAIR)
(p fresh)
(store (sf - - -) E[(eval V]) — (store(sf---)E[Z [(sf--),v]]D (EEVAL)
Z:(pr—(consvy) xv—s ¢:sxs—s
Z [Snull] =() € [sexp, (sexp ---)] =(sexp sexp - - -)
Z[Sn] =n ¢ [sexp,n] = (sexp dot n)
Z S #] =# € [sexp, sy] = (sexp dot sy)
Z [S #] = #f € [sexpn, #t] = (sexp dot #t)
Z [S (quotesy) | =sy € [sexp, #f] = (sexp dot #f)
#[spl =G [#[Va], Z[Va]]

whereSbindsp to (cons v, V)

Figure 6. Core Scheme, extended with eval and quote

ement list whose first and third elements are symbols and evhos Evaluation reductions only apply to a program after it hasrbe

second element is a list of one element:

(cons(quote lambdg
(cons(cons(quote x) null)

(cons(quote x) null)))

completely compiled.

Each program consists of a store and an expression. Program
expressionsd) can be applications, values, or identifiers. Evalua-
tion contexts E) dictate that evaluation takes place in a left to right
order inside application expressions. The valugsie procedures,

R°RS suggests (but does not require) that quoted data be al-quoted symbols, pointers (to cons cells), null, numberisifive
located only once, before the program runs. In systems \udh t

behavior (including all Scheme implementations we testdds

program returngt:

((lambda (f) (eqv(f) (f)))
(lambda () (quote (x))))

since the thunk passed aseturns the same result each time it is

called.

Our core Scheme calculus for modeliegplandquoteis shown

in figure 6. (Note that this model simplifies5RS Scheme’sval

procedure in that it does not accept an environment argujriemt
ensure that a datum behindyaote is inserted into the store only
once, the rewriting system is structured in two tiers roygiurre-
sponding to “compile-time” and “run-time.” Initially, pgyams are
just viewed as uncompiled s-expressions (elements of then-
terminal; note that we write dotted pairs witlot rather than a
period to avoid meta-circular confusion in our PLT Redex lenp
mentation), which in particular include programs with cgobtists.
Reduction rules that apply to these uncompiled expressiomot
evaluate them, but instead compile them into program ezfes
that do not contain quoted lists (elements of ¢heonterminal).

46

operations, and booleans.

The first group of evaluation rules (from BE@QS to EAPP)
correspond to the language’s runtime semantics, and shewttteo
list primitives and procedure application behave.d®S models
the application ofconsto arguments by allocating a new pair
in the store; anccar and cdr select the first and second values
in a pair by rules EGR and E®R. EEQV1 and EEV2 give
eqv?s semantics; it compares pointers for literal syntacticagity
(and, for this language, operates only on pairs). As in tlegipus
systems we have presented, procedure application is nibtgle
rule EAPP as substitution. Since each reduction takes place in an
evaluation(rather tharcompilatior) context, they will only apply
to programs that are completely compiled.

The second group of rules (from EQTESEQto EQUOTEPAIR)
apply at compile-time and show how to compile a program by
rewriting quoted constants into locations in the storehdfse rules
used theE context and quoted s-expressions were legal expressions,
quote would merely be a short-hand notation for building lists at
run-time and the above program would retéfnwhich would not
capture our intended semantics.

p ;= (store((xV) - --) (dw (dws- - -) €)) PC = (store((xV) ---) DC)
e == ...[(push(xed)|(pop) DC == (dw((dws:-)C))
v := ... | dynamic-wind call/cc C ;= (asinfigure 1)
dws == (xed
PC[(dynamic-wind(lambda () e;) — PC[(begine; (DWWIND)
(lambda () e2) (push (x; e, e3))
(lambda () e3))] ((lambda (x2)
(begin (pop) e3 x2))
€2))]
(X1, X fresh)
PC[(dw (dws- - -) C[(pushxz €1 e2)])] — PC[(dw (dws- - - (X2 €1 €2)) C[0O])] (DWPUSH)
PC[(dw (dws; - - - dws,) C[(pop)])] — PC[(dw (dws; ---) C[O])] (DWPoOP)
PC[(dw (dws; - - -) C[(call/cc v)])] — PC[(dw (dws; - -) (DWCALLcC)
C[(v1 (lambda (x)
(throw (dws; - - -) C[X))D]
(x fresh)
PC[(dw (dws; - - -) C[(throw (dws; - - -) e1)])] — PC[(dw (dws; - -) (DWTHROW)

T

[((x1 €1 €)dws ---), (X1 €3 €4) dWss - --)]
7

(xrere)), (x2ezeq))]

Cl(begin 7 [(dws; - - -), (dws; - --) |
e1)))

T [(dws ---), (dws ---)]
(beginey - - €3 --)
(z1 # z2)

Figure 7. Additions to figure 1 to support call/cc and dynamic-wind

Instead, the second group of rewriting rules elimingqi®te,
turning s-expressions into Scheme programs. Though wegrave
sented them second, these rules will actually come firsdnaton
sequences, making reduction sequences follow a two-plzdisgmp
where the EQOTE rules apply in the first phase and the evaluation
rules apply in the second phase. Intuitively, programs is finst
phase are arbitrary s-expressions and values are Schegramg

As mentioned above, thevalwe present here and in section 6
is not as full-featured as thevalof the RS informal description
because it does not accept an environment argument. Madelin
an eval that took an environment argument would be somewhat
more involved but would essentially require only runnienpked
programs in an alternate store.

The technique used in this section applies generally to lan-

whereas second-phase programs are Scheme expressiors-and v guages in which computation of a term proceeds in multipkesph

ues are Scheme values. This parallelism can be seen partycul
clearly in the definition of the evaluation contexts for apgtion
expressions. 11, a rewrite may occur once all of the s-expressions
to the left have become Scheme programdE,la rewrite may oc-
cur once all of the expressions to the left have become vatims
for the program above, the only rewriting rules that applythose
that rewrite the thunk’s body. Once it contains only a paittea
store value, the outer application can proceed.

To modeleval we use a technique similar to Mullerify [18].
The # metafunction accepts a value and turns it back into a pro-
gram (the#” function is used byZ; it is just the syntactic analogue
of cong. Once# completes, evaluation continues as usual. Of
course, reification may produce an s-expression contauilge.

In that case, the quote rules apply and put quoted date iatsttine
before evaluation continués.

I Most Scheme systems share quoted data even across callaltd-ev
example, our semantics producésfor the following program, but most
Schemes producé.

((lambda (f)
(eqv?(f)
(eval(cons’ quote(cons(f) '())))))
(lambda () '(x)))

We can adapt the definition o to handle this by special handling of
quoted forms during reification:

Z[Sp1]=Vv if Smapsp; to (cons(quote quote p2) and mapps

to (cons V().

which causes our semantics to proditédor the above example, but this
technique does not scale to a full Scheme that includes macro

47

that must be considered together — it is not sufficient in @sedo
write a preprocessor that moves quoted data in a progranthato
store because that program could @lhl at runtime. Scheme’s
macros are similar in this respect, so the technique showa he
could be used as a basis for modeling them. Staged and feaial
uation could also be modeled using this technique.

5. Call/cc and dynamic-wind

Scheme’sdlynamic-windfeature for annotating the dynamic extent
of a procedure call with entry and exit code that run whenéwver
program flows into or out of that extent, either through ndrpne-
gram evaluation or through the invocation of continuatibjeots
made bycall/cc (the latter situation being the more interesting one,
of course). Unfortunately, thougtynamic-wincdhas a large impact
on the meaning of continuation objecall/cc produces, the RS
formal semantics does not include any mention of it and nsdel
call/ccwithout respect to it. Here we will show how it works in the
context of the core Scheme with mutation presented in se&io
Our strategy for modeling these new features is based lyeawil
earlier treatments [4, 10, 12].

The language in figure 7 consists of the core Scheme with
mutation as shown in figure 1 augmented vai#ti/cc anddynamic-
wind. The basic strategy we take is to maintain a stack of all
dynamic-windcalls entered but not yet exited, which we call the
dynamic-wind stack. When we capture a continuation, werteco
the current dynamic-wind stack. When we throw to a contiiomat
object, we use the difference between the current dynarimd-w
stack and that recorded dynamic-wind stack to determinetwhi
pre andpostthunks need to be called.

p ;= (store((ptrsv) - - -) (dw (dws- - -) €)
e = (ee--) |(feed |(feg |(setlxe | (beginee--:)
| (throw x dws- - - EC[e]) | (push(xe g €) | (pope)
| lam | mulam|v |x
lam = (lambda(x---)ee---)
mulam := (lambda(x---dotx)ee---)
Y = fun | nonfun
fun = cp | mp | #%cons| #%null? | #%pair?
| #%car | #%cdr | #%set-car! | #%set-cdr! | #%list
| #%+ | #%— | #%/ | #%+ | #%call/cc
| #%dynamie-wind | #%values| #%call—with—values
| #%eqv? #%apply | #%eval
nonfun == pp | number | #%null | #t | #f
| (quote symbo) | unspecified
PC ;= (store((ptrsy) ---) DC)
DC ;= (dw (dws---) EC,)
EC =[] |(inert--- ECy° inert---)
| (fEC,e@ |(if ECs€) |(set!XxEC,)
| (beginECee:---)
| (#%call-with—value$ (cwv-markeEC,) v°)
EC, = []o|EC
EC. = []«|EC
inert = e |w

dws == (xcpcp
sV w= VvV |(#%consvy |lam | mulam
s x= (s---) |(s---dotnsg |nss
nss == number |#t | #f | [variable exceptot]
SC u= [|(e---SCs--")
| (if SCs9 | (if eSCy) | (if e eSC)
| (if SC9) | (if eSC)
| (set!xSC)
| (beginSCs---) | (beginee---SCs---)
| (throw x dws: - - SC) | (push(x SCs) s)
| (push(xeSC)s) | (push(x e g SC) | (pop SC)
| (lambda(x---) SCs---)
| (lambda(x---)ee---SCs---)
| (lambda(x---dotx) SCs---)
| (lambda(x---dotx)ee---SCs--)
| (cconsSCs) | (cconsv SC)
var := [variable exceptlot and keywords]
X ;= [variable names]
pp ;= [pair pointers]
cp := [closure pointers]
mp ;= [u closure pointers]
ptr == x|[pp|cp|[mp

Figure 8. Grammar for full Scheme semantics

That strategy is formally encoded in three parts. First, de a
a dynamic-wind stack to each program context. It contains on
dynamic context framedvg for each annotated dynamic extent
in which the current evaluation is taking place. A dynaminteat
frame is a triple consisting of a unique identifier and gne and
postthunks of the correspondingynamic-windcall. The unique
identifier allows us to disambiguate multiple dynamic eatitns
of the same syntactic appearance alyamamic-windexpression.
Second, we add the primitive procedure vatlygmamic-windto
the set of values, which expects each of its three arguments t
evaluate to a thunk. Then using the DWW rule it invokes its

simply discards any common prefix the two stacks may havestwhi
correspond to dynamic extents that were never left or etigue

ing the transitions from the time the continuation objecs waeated
and the time it was invoked. Then, once the two stacks have bee
trimmed to the point where they have distinct heads, the foveta
tion produces degin expression consisting of applications of all
thepostthunks from7’s first argument, invoked in order, followed
by all theprethunks from.Z’s second argument, invoked in reverse
order (which we indicate with the special notation,., indicating

a sequence being expanded out backwards).

pre thunk, pushes a dynamic context frame onto the stack with a g, Operational semantics for RRS Scheme

fresh identifier and its owpre andpostthunks, evaluates its second
thunk, pops its dynamic context frame off the stack, evalsidtis
postthunk, and finally returns the value its second thunk evelliat
to. To allow the program to manipulate the stack, we intredihe
pushandpop forms and their associated reduction rules DV¢R

and DWPRop. The former pushes a new dynamic context frame onto
the end of the stack, and the latter pops the last contextefiafin
the stack (and then evaluates to the trivial vadygvhich is never
used). These two forms are intended to be used onlgylmamic-
wind, never by the programmer directly.

The third piece iscall/cc. When call/cc is called, the DW-
CaLLcc rule builds a continuation object that consists of a pro-
cedure of one argument, a fresh identifier we will call hat pro-
cedure’s body is ¢hrow form that consists of the current dynamic
stack and the expression formed by pluggxigto the hole of the
evaluation context where the applicatiorcafl/ccitself was found.

A throw form is itself evaluated using the DWAROwW rule by dis-
carding the evaluation context in which it was found, rejplgdhe
dynamic stack with its own stored dynamic stack, and reptattie
entire program body with a specially-construchejin expression
built by the 7 metafunction (where T stands for “trim,” because
it trims away the common context frames leaving only the sedfi
whose pre- or post-thunks need to be executed). That functio-
pares its first argument, the dynamic-wind stack of the dyoam
context being exited, with its second argument, the dynamimd
stack of the context being entered. The first rule in its didini

48

This section combines the techniques from sections 2 tlird&ug
with other known techniques for modeling programming |aages

to build a model of RRS Scheme that includes all the features from
those sections along withand booleans, mathematical operations
(but not the numeric tower), list constructors, selectaratators
and predicates;-lambda procedurdsapply, and object identity-
based equivalence. Although this section appears largeamd
plex at first, it is mostly just a simple combination of the\pogis
four sections.

This specification is executable, and the figures presemied i
this section were automatically generated from the souotke c
that implements the specification. Since an executabléfgaion
was an explicit goal of our work, we have made some modeling
choices that may not be obvious at first. For example, thexe ar
many expressions whose return values are explicitly urifspedn

the PRS Scheme document, such as the resultsaftbexpression.
A non-executable specification might model the evaluatfdhase
expressions using the rule schema

¥V v. PQunspecifiel — PC[V]

2Procedures declared with an improper list of formal argusidescribed
in section 4.1.4 of the Report that accept an arbitrary nurabarguments
beyond a certain minimum. The name dates back at least tanadiniver-
sity’s Scheme 84 system wheM8LAMBDA was a keyword used to declare
procedures that accepted any number of arguments andtedligem in a
list [11].

meaning that an unspecified term reduces to any value. thstea
model unspecified results with a special valuspecifiedhat has

no associated reduction rules and will cause programstbpéct it

to get stuck. We also chose to ignore out-of-memory errdniese
would be easy to add at the expense of a additional cluttenwhe
visualizing traces: reductions from each allocation sitéhe out-
of-memory error would suffice.

6.1 Grammar

The grammar for RRS Scheme programs is given in figure 8. In
that figure, a program (given by tleenonterminal) consists of a
store, a dynamic-wind stack, and an expression. & hentermi-
nal gives expressions, which in addition to standard Schesne
forms can behrow, push andpop, as in section 5. Valuew) are
either procedures or non-procedure values, but noticesymaactic

lambda terms are not values themselves. Instead, procedure val-

ues fun) can be references to procedures in the stopafdmp)
or the built-in procedures, while tHambda form, as we will see,
places new procedure values into the store when evaluatat. N
procedure valuesnpnfun) include pair pointers, numbersyull,
booleans, symbols, and the unspecified value.

As in section 4, we write dotted pairs (as in the parameter lis
of a u-lambda) withdot rather than a period to avoid meta-circular
confusion in our PLT Redex implementation.

Section 6 of the RRS Scheme specification indicates that prim-
itive procedures are bound to names in the initial enviramizut

that those names can be mutated during the course of a program

To model that, we use special names with prefixes to indicate
the actual built-in procedures, and we bind those valuefea t
#%-less names in the initial store:

(store ((list #%list) (cons #%cons(car #%cal) (cdr #%cd)
(pair? #%pair? (null #%null) (null? #%null?)
(set-car! #%set car!) (set-cdr! #%set cdr!)
(+ #%+) (— #%—) (/ #%l) (* #%6x)
(call/cc #%call/cg (dynamic-wind #%dynamiewind)
(values #%valugqcall-with-values #%cal-with—value$
(eqv? #%eqvR(apply #%apply (eval #%evd) - - -)

There are three different contexts we will make use of: pogr
evaluation contexts, dynamic-wind contexts, and expo@sson-
texts. Each program evaluation context (PC) contains & stord
a dynamic-wind context. Each dynamic-wind context (DC)-con
tains a dynamic-wind stack and an expression context. Ezjme
contexts (EC) are the contexts in which program evaluatdeg
place; they allow evaluation in marked sub-expressionscdz
plication (as in section 2), the test positionsifoExpressions, in
set! expressions and in the first position ibbegin (as long as there
are at least two expressions in thegin). The evaluation context
for #%call-with—valuesis explained in section 6.7. The E@nd
EC. evaluation contexts anidert work like C, andC, andinert
from section 3.

The dws non-terminal corresponds to one frame of dynamic-
wind context information and its use is explained in sec&oiihe
svnon-terminal generates values that appear in the store.

S-expressionss(@and nsg and s-expression contexts (SC) cor-
respond to s-expressions and s-expression contexts frctiorsd.
There are more possible s-expression contexts in the fujiage
because there are more possible syntactic forms.

Finally, thex nonterminal represents both program variables and
binding locations, and thpp, cp, andmp nonterminals represent
pointers to pairs, fixed-arity procedures, and variabi-g@roce-
dures, respectively. Thetr non-terminal is a short-hand for terms
that index into the store. One subtle point here is thatvtipeo-
duction producegp, cp, andmpbut notx. Those variables are not
included because free variables are not values and bouizdbhes

49

have to be dereferenced before use, so neither qualifiesiagan
ducible value.

6.2 Relations

In the remaining figures, we will make heavy use of variousiced
tion relation symbols. The basic reduction relation we wike is

—, which indicates that the program term on the left reduces in
one step to the term on the right. We also use two other rato

aid in the system'’s readability, defined in terms of theelation:

(&1 €,) =0 €iff PC[(€] - - €})] — PCIe]
The application on the left reduces to the term on the right in
a program context, assuming that all of the expressionsen th
application are marked.

e e—“error: siff PC[e] — error: s
The term on the left signals an error, halting the programénm
diately.

6.3 Basic syntactic forms

Figure 9 shows rules for the basic syntactic forms. Foiiftlierm,

if the test position evaluates to anything other thdnthe term
rewrites to its “then” subexpression. If the test positioaleates
to #f, it rewrites to its “else” subexpression, if presaimspecified
otherwise. For thdegin form, the evaluation contexts defined in
figure 8 ensure that the first term obagin expression containing
at least two expressions is evaluated fully; then theses redeise
begin expression that consists of a fully-evaluated value fodw
by one or more expressions to rewrite to a rMesgin expression
with the initial value dropped. These rules also specify #tzegin
form with only a single expression reduces immediately tat th
expression, even if that expression is not yet a value.

Because our model does not take into accoltRK Scheme’s
numeric tower, we model its numeric operations in terms wé tr
mathematical functions. We assume that we can identify i t
number represented by each numeric term and model eachicumer
procedure by performing the appropriate mathematical atijmer
on those true numbers: is modeled by summation on the repre-
sented numbers, is modeled by multiplication, and so on.

6.4 Cons and cons-cell mutation

The rules for constructing nesonscells are given in figure 10.
Since all cons cells are mutable and therefore can be disthed
even when they hold identical values, we cannot allé%¢ons v ¥
to be a value itself. Instead, tH&sconsrule introduces a new pair
into the store and reduces to a pointer to that new pair. Fogigt
vy ---) rule rewrites to (@mbda x X) v; - - -), taking advantage of
the u-lambda application rules described in the next subsection

Figure 11 gives rules farar andcdr. Application of either pro-
cedure to a pair pointer rewrites to the contents of the gpate
field in the pair being pointed to. If either selector is apgdlio a
non-pair value, the term rewrites to an error message.

The predicates in figure 12 are similarly simple. H¥pair?
procedure reduces tét if its argument is identifiable as a pair
pointer and#f otherwise. Thet%null? procedure reduces i if
and only if it is supplied with the built-in null value.

Figure 13 gives rules foset-car! and set-cdr! for cons-cell
mutation. The#%set-car! and#%set-cdr! rules are the same as
thecar andcdr rules, respectively, except that instead of reducing
to the current value of appropriate component of the paindei
pointed to, they replace that component with the given repteent
then rewrite to an unspecified value.

6.5 Procedures and assignable variables

The rules in figure 14 handle variable lookup and variablégass
ment: a binding pointer is replaced with its value in thestwhen

PCI(f v1 €1 e2)] - PClei] PCl(eginve e ---)] N PCl(begine; e - -)]
(va 7 #) PCl(begine;)] ~ PCli]
PC[if #fe1 e2)] — PClel] (+) o Iynp..Jl
PCI(f v1 e1)] — PCler] (— 'yt Tngt - J) —© Ny — (Zng-- .)1
(v1 # #f) (= nl) —° Il
. xnl .- 0 MIn-..1
PCI(f #f e)] — PClunspecifiefl (Tng Mgl - o g/ (Tng --)
G (nﬂ) —° 1/ nﬂ
Figure 9. Basic syntactic forms
(store ((ptry svi)---) — (store((ptr; svy) - - - (p; (#%cCONS ¥ar Vear)))
DC[(#%conS Vear® Vedr°)]) DClp:])
(p; fresh
PC[@#%list vi° - -)] — PC[((ambda (dot 1) [)° v1° -)]
Figure 10. List constructors
(store ((ptrz svy) - - - — (store ((ptry svy) - - - (#%null? #%nul) +—° #t
(Pp; (#%cCONS Var Vedr)) (Pp; (#%coNS ¥ar Vedr)) #%null? v;) o H#f
(ptri+1 S\/i+1) o) (ptri+1 SVH—I) D) (v; #%nul)
DCI(#%car pp;°)]) DCl[Vear]) ¢
(#%car v;°) —¢ error: can't take car of non-pair | (#%6pair? pp —° #
(vi & pp) (#%pair? v;) —° #f
(store ((ptr; svq) - - - — (store ((ptr; svy) - -- (vi & pp)
(PP; (#%CONS Va7 Vedr)) (Pp: (#%CONS Var Vear))
(ptriys SVit1)) (Ptriys SVit1)--)
DCI[(#%cdr pp;°)]) DClVear])
(#%cdr v;°) —¢ error: can’t take cdr of non-pair
(vi Z pp)
Figure 11. List accessors Figure 12. List predicates
dereferenced, and mutation of a binding pointer is repteseiy eled by creating one new binding pointer in the store per &rm
replacing the value pointed to by the upddtenbda is the only argument where the value being pointed to by each pointéreis t
binding form in this semantics, so the rules for procedutis eae argument supplied in the appropriate position, and rengito the
the only ones that introduce new bindings. Procedure calsad- procedure’s body with these new bound-variable pointebstsu
eled by two features: closure introduction and procedupsicp tuted for occurrences of the formal arguments.
tion. Application of au-lambda allocates a list for its extra argu-
The rules in figure 15 govern the introduction of closure val- ments, applies the initial portion of the arguments as ysaad
ues into the store. Like cons cells, procedures are not satue applies the extra arguments into the last argument of theepikoe

pointers to them are; procedures are modeled this way savinat that actually contains the body expressions. The funcflamsed
can modekqv?more accurately. The allocation rule for fixed-arity here is a metafunction that builds the syntax abaslist from its
procedures is straightforward. The allocation felambda proce- arguments:

dures always puts two procedures into the store: a gtlémmbda
procedure whose body contains a call to an ordinary proegdad

an ordinary procedure that contains the origindambda’s body ZE: H(y] C gjﬁcjps Xly-1)
expressions.

The reason for arranging the system this way is so that when a
p-lambda procedure is applied, we can rewrite it into a cpoad- The last rules specify the behavior of Schenagplyprocedure
ing call to the fixed-arity code pointer and thereby use timeesee- which accepts a procedure and an arbitrary number of argismen
duction for both kinds of applications. The rules in figuresh®w the last of which must be a list. It calls the procedure with th
this and the rest of the rules for application in detail. Thet fiule arguments and the contents of the list as subsequent arggirfien
shows how marks are placed in applications, which is jusinas i model it, the first two#%applyrules flatten out the argument list
section 2. Application of a procedure pointer to argumentaod- and, when the list is exhausted, reduce to a normal apmitati

50

(store((ptr; svy) - - - -
(ppL (#%COI’]S Var Vcdr))
(Ptrit s SVig1)--)
DC[(#%set-car'® pp;° Vpnew°)])

(#%set-car!® v;° v°) —¢

(store((ptr; svy) - -- —
(pp; (#%CONS ¥ar Vear))
(ptrit7 SVit1))

(store ((ptrs svy) - -
(PP; (H%CONS Vicw Vedr))
(Ptrigs SVit1)---)
DClunspecified)
error: can't set-car! on a non-pair
(vi & pp)
(store ((ptrs svy) - -

(Pp; (#%CONS Var Vnew))
(Ptrit s SVig1)-+°)

(store ((ptrs svy) - - — (store((ptr; svy)---
(X: sv) (% sv)
(Ptriys SVigr)--) (Ptriys SVigr) -
DC[x;]) DC[sv])
(store ((ptry sv) - - — (store((ptr; svy) - - -
(X; sv;) (X Vnew)

(Ptriys SVigyr))

DC[(set! X; Vnew)]) DClunspecified)

(Ptriys SVigr) -~

DC[(#%set-cdr!® pp;° Vnew®)]) DClunspecifiet)
(#%set-cdr!® v;° v°) —¢ error: can't set-cdr! on a non-pair
(V1 €pp)

Figure 13. Cons cell mutation

(store((ptr; svy) ---) N
DC[lam;])
(store ((ptry svi) - -) -

DC[(lambda (x; - - - dotx,) e; ez --)])

Figure 14. Variable mutation and lookup

(store ((ptr; sv;) - - - (cp; lam))
DClepi])
(cp; fresh
(store ((ptr; svy) - -
(mp; (lambda (x; - - - dot X,.) (Cp; X1 - - * X))
(cp; (lambda (x; - - - %) €1 & - - -))
(mp;, cp; fresh

Figure 15. Procedure introduction

PCl(nert; - - - & inert;4q - - -)]

(store ((ptr; svy) ---
(cp; (lambda (x1 - -) €bodyl €body2 -)
(ptriy s SVip1)---)
DC[(sz‘O Varglo o)])

(store((ptrsy) - - -
(cp; (lambda(x; ---)ee--))
(ptrsy ---)

DC[(Cpio Va’r‘glo o)])

(store((ptr; svy) - --
(mp; (lambda (x; - - - doty) (cpe X1 - - - ¥)))
(ptriss SVigz1))
DC[(Mp; Vp1° - -+ VR® -+ 4)])

(store((ptrsy) - - -
(mp; (lambda (x; - - - dot x) (cp x- - -)))
(ptrsy) ---)

DC[(mplo Varglo o)])
(nonfur? ve - -.)

(store ((ptr; svy) - --
(Pp: (#%CONS Var Vear))
(Ptrit s SVigr)---)
DC[(#%apply’ V¢° Varg1® - - - pp;°)])

(#%apply v Vargt - - - #%null)
(#%appl)? Vfo Va'r‘glo e Vlusto)

— PC[(nert; --- &° inert;41 - -]
- (store ((ptr; svy) - --

(cpi (lambda (X1 - - +) €pody1 €vody2 *)
(Ptriqz SViqq) -
(Xarg2 Vn,'rgl) T)
DC[(begm ebodyl ebody2 o ')[Xl T /Xarg2 o])])
(#Xarg = #Varg y Xa'rgQ T fresr)

— error: arity mismatch

(#Xarg 7é #Va'rg)

— (store ((ptr; svy) - - -

(mp; (lambda (x; - - - doty) (cpe X1 - - - ¥)))
(Ptriys SVigs))
DCI(cpt Vn1® - L[VR® ---])])
(#x = #vy,)

— error: too few arguments

(#Xarg < #Va'rg)

—¢ error: can't apply non-function

— (store ((ptr; svy) - - -

(Pp; (#%CONS Var Vedr))
(ptriys SVigq)---)
DC[(#%apply’ V¢° Varg1® - - - Vear® Vedr°)])

—° (Vf Vu,'rgl c)

—¢ error: apply must take a list as its last argument

(Viast & PPU {#%null})

Figure 16. Procedure application

51

)

)

(store ((ptrs svs) - - -) (store ((ptrs svs) - - +)

(dw (dws; --+) (dw (dws; - -+)
EC, [(#%calllce v;°)]) EC:[(push dws; epe.+)]))
— (store((ptrs svs) - - -) — (store((ptrs svs) - -)
(dw (dws; - - -) (dw (dws; dws; - - -)
EC;[(v1 (lambda (dot args) ECi[enext]))

(throw x;, dws; - - -
EC, [(beginx; (#%apply #%values arg})))]))

(Xy X fresh) (store ((ptrs SVS) o)

(dw (dws dws, - - -)

EC1[(pop encz1)]))
(store ((ptrs svs) - -) — (store((ptrs SVs) - - -
(dw (dws; - - -) (dw (dws; - --)
EC; [(#%dynamie-wind® cp; ° cpz° cps°)])) ECi[enext]))
— (store((ptrs SVs) - - -)
(dw (dws; - -+) (store ((ptrs svs) - -)
EC [(begm((crn?]() (dw (dws, - -)
push (i cp Cps) EC, [(throw x;, dws; - - - ECy[en
((lambda (x2) (pop (begin (cps) ¥2))) L (store (aon X (e=D)
(cp2)))D) (dw (dws - - -)
(X1, x2 fresh) (begin T [(dws; - - -), (dws; - --)]
ECy[e2])
Figure 17. Call/cc and dynamic-wind Figure 18. Call/cc and dynamic-wind support
PClv1]« — PC[#%values$ v, °)] (#%eqv? pp pp;) —° #t
PC[@#%values$ v; °)]o — PCv1] (#%eqv? cpcp;) —° #t
PC[#%values v1° -)]0 — error: wrong number of values| (#%eqv? numbarnumber) —° #t
(v # 1) (#%eqv? v Vi) —°
(#%call-with—values V,qis Viun) —° (#%call-with—value$ PC[@%eqv? vi° v2°)] R PC]
(CWV'Tark(Vvals)) (Vl 75 V2)
Viun® L
PC[#%call—with—value$ — PCIW fun® Varg®)] (#%eqv? v1° --) —¢ error: arity mismatch
(cwv-mark(#%values Vo ° - - -)) (i #2)
Vfuno)]
(#%call—with—value$ v;° - -) —¢ error: arity mismatch
(#v; # 2)
Figure 19. Multiple values and call-with-values Figure 20. Eqv and equivalence
6.6 Call/cc There is one twist, though, since rather than dpply-values
Our technique for modelingall/cc and dynamic-wing shown in primitive given in section 3, BRS Scheme providesall-with-
figures 17 and 18, is essentially the technique from section 5 Values so we model it directly. To do so, we have to use the mech-
Apart from the change of using procedure pointers rather tha anisms described in section 3, along with a new context auinta
literal source text of procedures as required to model éyuake cwv-mark A term of the form ¢%call-with—values thunk ¥ re-
section 6.8), the only substantial change is that the coation duces to #%call-with—values(cwv-mark(thunk) f); that is, it

procedures in this model accept any number of arguments. ThePlaces a special mark around the application of the thunkoto n

trimming metafunction? is the same function defined in section 5. arguments. At that point the evaluation contexts definedgn fi
ure 8 will apply and reduce the applied thunk in a multi-vatoa-

text. When that reduction sequence yields a result (whidheia
multiple-values expression), the entaall-with-valuesexpression
reduces to the application of the second procedure to thase p
Multiple values in the full language are nearly identicaintalti- duced values.

ple values in section 3, and in particular the context areament
and promotion and demotion rules are the same. Furtherenen,
though the present system is much larger than the systereneets
in section 3, the rules for multiple values are still comelgtor- Figure 20 shows the rules feqv? Since all mutable values (and
thogonal to the rules that implement the other features. procedures) are allocated in the stoegyv?is a simple matter

6.7 Multiple values and call-with-values

6.8 Eqgv? and equivalence

52

(store ((ptr; svy) ---)
DC[(#%evaP v;°)])

(store ((ptry svy) ---) —
(dw (dws ---)
EC,[SCi[(quote(si sz - -)ID)
(store ((ptrs svy)---) —
(dw (dws; ---)
EC1[SC1[(quote O)I1))
(store ((ptr; svy)---) —
(dw (dws - -)
EC; [SC; [(quote numbeg)]]))
(store ((ptr; svy)---) —

(dw (dws; - -)
EC1[SCi[(cconsvi vo)]1))

(store ((ptrs svy) ---)
DCIZ [((ptrz sv1) ---), va]])
(store ((ptry svi) ---)
(dw (dws; ---)
EC1[SCi[(ccons(quote si) (quote (sz - -)D)
(store ((ptrs svy)---)
(dw (dws; ---)
EC, [SCi[#%null]))
(store ((ptry svi)--+)
(dw (dws; --)
EC; [SCi[numbei]]))
(store((ptry svi) - - - (pp1 (#%cCONS ¥ V2)))
(dw (dws; - - -)
EC[SCi[pp:]D)

(pp1 fresh

Figure 21. Quote and eval

of checking that the two values supplied have identical syt
structure (which we indicate here, as PLT Redex does, byateme
the same subscript for both arguments to ¢g@? procedure to
indicate that the two subterms must be identical).

6.9 Quote and eval

The rules fo#t%evalandquotein figure 21 are essentially the same
as the rules foevalandquote in section 4. The main difference is
that the rewriting rules for replacing quote are nested ao@text
inside an EC context. This only matters when usigeval In
particular, if the call to#%evalis in some marked context, SC
will not match properly, due to the marks. In the smaller ahls,

we could get away with just using SC, since it also encomphsse
evaluation contexts, but here we must be explicit. The feifigtion

(Z) used here is as defined in section 4.

7. Related Work

Reduction semantics has been used to model large progrgmmin
languages many times and in many different ways. Fellessdis-
sertation [3], which introduced context-sensitive redutseman-
tics, gives a formulation of a substantially smaller larggighan

mantics [23], but we know of no formal correspondence betwee
his program and the denotational semantics itself.

8. Conclusion

We have presented a semantics RS Scheme using context-
sensitive reduction semantics developed using PLT Redeihd
best of our knowledge, it formalizes more of the language tha
any other semantics for the language. In addition it shows ho
to model RRS Scheme-style multiple return values in an small-
step operational semantics setting for the first time, andsga
new model for unspecified sequential evaluation ordersubes
nondeterministic choice. In the process, we have introdigegeral
new techniques for modeling programming language feawitbs
term rewriting.

PLT Redex and the source code for all the models presented in
this paper, including our executable model iia: Scheme, are
available for download at

http://www.cs.uchicago.edu/“jacobm/r5rs/

Acknowledgments

the one we present here that he calls “idealized Scheme,” andThanks to Kent Dybvig and Matthew Flatt for helpful discass

Felleisen extends that model into thev-CS calculus in later
work [4]. Since then, reduction semantics have been useatzm
the cores of many languages including Emacs Lisp [19], Multi
isp [7], Java [9], ML [13, 24] and Concurrent ML [21] among ryan
others. Harper and Stone present a formal semantics fod&thn
ML that includes a dynamic semantics encoded using a vaniati
on Wright and Felleisen’s notation; it is the largest exanpi a
programming language semantics given in a variant of résluct
semantics we have found in the literature (with the possktep-

tion of our own semantics for /RS Scheme).

There has also been extensive work on the semantics of Scheme

Clinger presented an operational semantics for a core Seliem
the development of the notion of space efficiency [2]. Gadbit
Knauel, Sperber, and Kelsey have presented operationatiend
notational semantics fatynamic-wind12]. Ramsdell presented a
structural operational semantics for Scheme aimed at ftkiagin-
specified order of argument evaluation problem we discusslin
section 2 [20]. His model is less complete than ours (forainsg,

it does not include multiple return values) and is tied muaren
closely to the RRS Scheme formal semantics. Van Straaten has

written an interpreter based on th@RS Scheme denotational se-

53

of the technical details presented here and the inner wgskaf
Chez Scheme [1] and MzScheme [8]. Thanks also to John Reppy
and Dave MacQueen and the anonymous reviewers for thefiuhelp
suggestions.

References

[1] Cadence Research Syster@hezScheme Reference Manual, 1994.

[2] William D Clinger. Proper tail recursion and space efitty.

In Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementatjgrages 174-185, June 1998.

[3] Matthias Felleisen.The Calculi of Lambda-v-CS Conversion: A
Syntactic Theory of Control and State In Imperative Higbeder
Programming Language$hD thesis, Indiana University, 1987.

[4] Matthias Felleisen. Lambda-v-CS: and extended lamtadeulus for
Scheme. IrProceedings of the Conference on LISP and Functional
Programming 1988.

[5] Matthias Felleisen and Matthew Flatt. Programming lzages and
lambda calculi. Available online: http://www.cs.utahuéult/

publications/plic.pdf, 2003.

[6] Matthias Felleisen and Robert Hieb. The revised repartte

syntactic theories of sequential control and stafEheoretical

Computer Sciencd02:235-271, 1992. Original version in: Technical
Report 89-100, Rice University, June 1989.

[7] Cormac Flanagan and Matthias Felleisen. The semarntifigre
and an application.Journal of Functional Programming:1-31,
1999.

[8] Matthew Flatt. PLT MzScheme: Language manual. Techni-
cal Report TR97-280, Rice University, 1997. http://wwi.pl
scheme.org/software/mzscheme/.

[9] Matthew Flatt, Shriram Krishnamurthi, and Matthias [Egen. A
programmer’s reduction semantics for classes and mixtsmal
Syntax and Semantics of Javib23:241-269, 1999. Preliminary
version appeared in proceedings Rriinciples of Programming
Languages1998. Revised version is Rice University technical report
TR 97-293, June 1999.

[10] Daniel P. Friedman and Christopher T. Haynes. Comstrgicontrol.
In Proceedings of the ACM Conference Principles of Prograngmin
Languages1985.

[11] Daniel P. Friedman, Christopher T. Haynes, Eugene ls@tker, and
Mitchell Wand. Scheme 84 interim reference manual. Tedinic
Report 153, Indiana University Computer Science, 1985.

[12] Martin Gasbichler, Eric Knauel, Michael Sperber, andHard A.
Kelsey. How to add threads to a sequential language witheiting
tangled up. IrProceedings of the 2003 Scheme WorksR2603.

[13] Robert Harper and Mark Lillibridge. Explicit polymdnsm and
CPS conversion. IfProceedings of the ACM Conference Principles
of Programming Language4993.

[14] David Herman and Philippe Meunier. Improving the statalysis of
embedded languages via partial evaluationPtoceedings of ACM
SIGPLAN International Conference on Functional Programgni
pages 16-27, New York, NY, USA, 2004. ACM Press.

54

[15] Rickard Kelsey, William Clinger, and Jonathan Reesitd).
Revised report of the algorithmic language Schem&M SIGPLAN
Notices 33(9):26-76, 1998.

[16] Jacob Matthews. Operational semantics for Scheme eria t
rewriting. Technical Report TR-2005-02, University of Cgo,
2005.

[17] Jacob Matthews, Robert Bruce Finder, Matthew Flattl Btatthias
Felleisen. A visual environment for developing contextsstve term
rewriting systems. IfProceedings of the International Conference on
Rewriting Techniques and Applications (RT2004.

[18] Robert Muller. M-LISP: A representation-independelilect of
LISP with reduction semanticACM Transactions on Programming
Languages and Systendst(4), 1992.

[19] Matthias Neubauer and Michael Sperber. Down with Emacs
Lisp: Dynamic scope analysis. Proceedings of ACM SIGPLAN
International Conference on Functional Programmi2§01.

[20] John D. Ramsdell. An operational semantics for Schernisp
Pointers volume 2, April-June 1992.

[21] John ReppyConcurrent Programming in MLCambridge University
Press, 1999.

[22] Gerald Jay Sussman and Jr Guy Lewis Steele. Schemetdmpiater
for extended lambda calculus. Technical Report Al Lab Menid-A
349, MIT Al Lab, 1975.

[23] Anton van Straaten. An executable denotational seicgurior
Scheme. http://www.appsolutions.com/SchemeDS/.

[24] Andrew Wright and Matthias Felleisen. A syntactic apgeh to type
soundnessinformation and Computatigrpages 38—-94, 1994. First
appeared as Technical Report TR160, Rice University, 1991.

