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Abstract
Teaching the introductory course on programming is hard, even
with well-proven didactic methods and material. This is a report on
the first-year programming course taught at Tübingen and Freiburg
universities. The course builds on the well-developed systematic
approaches using functional programming, pioneered by the PLT
group. In recent years, we have introduced novel approaches to
the teaching process itself. In particular, assisted programming ses-
sions gave the students a solid basis for developing their program-
ming skills. In this paper we trace the development of our ap-
proach. Furthermore, we have collected information on how well
our course had worked, and how the results together with our ex-
perience gained over years have lead to substantial, measurable im-
provements.

Categories and Subject Descriptors K.3.2 [Computers and Edu-
cation]: Computer and Information Science Education—Computer
science education; D.3.3 [Programming Languages]: Language
Constructs and Features

General Terms Experimentation, Languages

Keywords Introductory Programming Course, Assisted Program-
ming, Scheme, TeachScheme!

1. Introduction
Each year thousands of students start studying computer science at
universities. Most universities offer or even require an introductory
course where students are taught basic programming skills. These
courses (intro courses for short) usually teach programming in
a particular programming language, the usage of programming
environments and tools, proper documentation of code, testing and
debugging, and so on. Their intention is to build up a proper general
foundation in programming, as well as to prepare for subsequent
courses.

However, teaching the intro course well is exceedingly difficult:
Almost every teacher who has taught an intro course can recite a
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long litany of frustrating experiences. Even if students produce run-
ning programs, many of these programs lack simplicity, systematic
construction, and correctness.

Functional programmers often think that these problems can
easily be remedied by simply changing the programming language
to a functional one. But this is not enough. The TeachScheme!
project [12] has done pioneering work on developing a radically
new and effective approach to the teaching of programming. They
identify crucial items for developing systematic programming abil-
ities across a wide range of student backgrounds. However, we have
found that simply using the TeachScheme! methodology in a tradi-
tional (German) course still leaves room for improvement.

While a certain percentage of students always seems to do well,
a large proportion just does not seem to grasp the essence of pro-
gramming. Moreover, students often tend to dislike a course that
emphasizes more systematic approaches to programming: Those
with little or no experience in programming are easily discouraged
by problems they encounter when doing their homework. These
problems rank from using the programming language environment
and simple syntax errors to actual problems of understanding the
material. It is crucial to motivate these students with doable (read:
easy) exercises in the first few weeks of the course. However, stu-
dents who have previous “programming experience” often do not
feel sufficiently challenged by the early homework exercises. Those
students tend to solve them quickly and superficially by tinkering,
missing the chance to acquire a systematic, clear and concise cod-
ing style. Between these two extremes there are many students who
feel comfortable solving well-posed homework exercises. How-
ever, they are unable to solve problems that differ from the exam-
ples given in the lectures. They often run into trouble when trying
to solve less structured problems.

Is there a way to teach students the required skills with neither
boring nor discouraging them? Is it possible to teach them how to
properly design programs and to maintain readable code? How can
we enforce that they follow the design principles of clean coding?

We have adopted the tools of the trade developed by the
TeachScheme! project: functional programming rather than object-
oriented programming, Scheme as the programming language, and
the DrScheme IDE for quick, test-driven development tailored to-
wards students of the intro course. In addition, the most important
new building block of our courses is assisted programming. In as-
sisted programming sessions, we supervise our students closely
on a weekly basis. Additional tutorial sessions serve to discuss
selected topics in more depth.

Although many critics and sceptics did not believe we would
succeed, our experience with this approach was stunningly good.
Not only did the students perform well on exams, they were also
able to transfer their knowledge to other programming languages



(Java) and IDEs (Eclipse). Furthermore, their ability to think in
a structured way helped them to perform well also in following
courses.

In this paper we report on the development of the course, our
experiences, and the results.

Overview Section 2 describes the common curricular circum-
stances of the intro course in Tübingen and Freiburg and speci-
fies the material we cover in our intro courses. Section 3 gives
a brief overview of specific differences between the Freiburg and
Tübingen courses. Section 4 explains the development of the course
concept in Tübingen. We then present in Section 5 an analysis of
the results in the final exams and of a course evaluation conducted
among students. Section 6 briefly describes follow-up courses and
their interaction with the intro course. Section 7 concludes with a
discussion of what we have achieved so far, and what we think can
still be improved.

2. General Setting
The curricular environments in which the intro courses in Freiburg
and Tübingen take place are quite similar, as are the goals of the
intro courses described in this paper. This section describes the
commonalities between the two courses in form and content and
gives a short overview of rationale for the choice of material.

2.1 Goals
After finishing the course, students should know basic program-
ming techniques as well as elementary data structures and algo-
rithms. Furthermore, students should be aware of the fundamental
concepts of programming languages, so that they can learn new
languages on their own. Finally, the intro course should prepare
students for a follow-up course using Java.

2.2 Course Outline
The contents of the course roughly follows the book “Die Macht
der Abstraktion” [20] (in German, DMdA, engl.: The Force of Ab-
straction) which, in turn, is inspired by the book “How to Design
Programs” [10] (HtDP). DMdA compresses the syllabus of HtDP
by slightly increasing the “height” of the individual conceptual
steps taken (read: it omits some of the fine-grained intermediate
steps) and by omitting some of the advanced patterns for design-
ing functions. Thus, DMdA is best suited (and laid out) as a sup-
porting textbook for a course that reinforces the material by prac-
tical coursework. In addition, DMdA covers some mathematical
background material that parallels the programming constructs just
taught. This material is intended to instill in students the idea that
programming is a mathematical activity and demonstrate some of
its elegance.

2.2.1 Programming Methodology
The programming methodology taught by the course is that of sys-
tematic programming using data-driven and test-driven top-down
design (following DMdA and HtDP). It requires students to follow
a rigid process under strict supervision when doing their course-
work. This process is enforced by assisted programming sessions
as described in section 2.3.

Here is a very brief summary of this methodology: Initially,
students define the data structures underlying their problem. They
learn to build and document these structures from the standard
types using primitive types, composition (product types), alterna-
tives (variant types), and recursive types. Once the data structures
are fixed, they define a function by first giving a one-line problem
statement and then writing down a contract, which is initially just
a type signature. The next step consists of writing down test cases
for the function. Finally, the students implement the function. This

activity is driven by the preceding analysis of the input and output
types of the function. The DMdA/HtDP methodology provides a
number of design recipes that make the construction of the function
bodies to some extent a mechanical effort driven almost entirely by
the types.

The point here is to constructively teach the students the design
rules followed by successful and effective programmers. This is in
sharp contrast to most traditional curriculi, which teach mostly by
example, leading to “programming-by-tinkering”. In our approach,
they learn to systematically deconstruct a problem and then to
construct the solution just as systematically. For details on this
approach, consult HtDP or DMdA.

2.2.2 Programming Language and Environment
The course is based on a progression of language levels derived
from the Scheme programming language [25] as provided by the
DrScheme programming environment [7, 9, 13]. (The language
levels were developed especially for DMdA. They are different
from the HtDP language levels, but based on the same principles.)
The progression of languages enables the teacher to adapt the
expressiveness of the language to the current ability of the students,
thus unleashing additional expressiveness as the students progress.

Using a Scheme dialect for teaching programming has several
advantages.

• Programming instruction can make use of DrScheme, an in-
tegrated program development environment with documenta-
tion, stepper, debugger, support for testing, and some analy-
sis. DrScheme familiarizes the students with the concepts of
an IDE without overwhelming them with a plethora of features
meant for professional programmers (as would be the case with
Eclipse, for example, [2, 16, 24]).

• DrScheme is designed to support exactly the programming
methodology explained in Sec. 2.2.1.

• DrScheme implements the language levels as well as the func-
tionality to implement further levels of this kind.

• There is well-developed teaching material for the approach
taken with several books being available. The students appre-
ciate that DMdA is in German. A wide variety of books on
advanced Scheme programming and on teaching programming
concepts using the Scheme language [23, 8, 14, 27] show stu-
dents that Scheme is not a dead end.

• The strong, dynamic typing regime of Scheme provides ulti-
mate liberty in writing types and contracts: if needed, very com-
plicated constrained types (as with Java generics or Haskell’s
type classes) or even dependent types can be written. In this
aspect, Scheme is close to today’s popular scripting languages,
but without the drawback of weak typing and automatic type
conversion that prevail in scripting.

• The dynamic typing regime also avoids frustrating struggles
with type checkers and type inference algorithms (although
DrScheme performs some static analysis and rejects some pro-
grams before they get to run).

• Scheme imposes no particular programming paradigm. We
teach functional, imperative, object-oriented, and event-driven
programming styles in the course.

2.2.3 Overview of Material Covered
Here is the progression of topics treated in the course.

• introduction emphasizing the need for contracts with an exam-
ple suffering from underspecification

• functions consuming and producing values of primitive datatypes
(numbers, strings, booleans)



• a formal execution model: the substitution model
• scope and lexical binding
• function definition by case distinction and branching
• record types with constructors, selectors, tests (the Scheme

dialect has explicit declarations for these types)
• variant types
• functions consuming and producing records and variants
• case study: game of Nim
• polymorphic contracts for pairs to prepare for polymorphic lists
• pairs and lists (recursive types)
• functions consuming and producing lists
• recursion on (natural) numbers
• properties of evaluation: nontermination, recursive and iterative

evaluation, tail recursion
• mathematical excursion: relations, ordering, and inductive def-

initions; induction on numbers and lists
• case study: towers of Hanoi
• functional programming: functions as data, higher-order func-

tions
• abstracting over functions (filter, fold), anonymous func-

tions
• function composition, iterated function composition, currying
• time-dependent models: animation, model, and view
• visual recursion: simple fractals (not in DMdA)
• recursive data: binary trees
• consuming and producing binary trees
• search trees
• case study: Huffman trees
• mathematical excursion: trees, terms, term induction, Σ alge-

bras, basic properties
• abstract datatypes, encapsulating functions with data (e.g.,

packaging the ordering with a search tree)
• different implementations of an ADT signature
• computability, halting problem, complexity (by term induc-

tion), sorting lists and its complexity (Freiburg only)
• assignments and state, set!, encapsulated state
• extended substitution model with a store (Freiburg), environ-

ment model (Tübingen)
• excursion: parallel execution with assignment to shared state
• object-oriented programming: message passing, inheritance,

single vs. multiple inheritance, overriding methods, mixins
(Freiburg only)

• λ calculus
• interpretation: BNF, symbols and quote, representation of syn-

tax trees, closures, definitions (Freiburg only)

2.3 Assisted Programming
During an assisted programming sessions students solve a set of
programming exercises under the supervision of a doctoral student
assisted by one or two teaching assistants (TAs). The assistance
provided by the supervisors is geared to design recipes as they
provide a valuable orientation for quickly gauging how far a student
had gotten solving the problem. The supervisors ensure that the
students follow the design recipes. The visible traces of the design
recipes such as test cases, contracts, and short descriptions make it
easier to understand the student’s problem and provide useful help.
For example, a wrong understanding of the problem statement often
leads to wrong test cases (that must be specified before writing
the code). This may be discovered and discussed with the student

just by inspecting the test case—a useless and time-consuming
inspection of the source code becomes superfluous.

Assisted programming sessions take place in the department’s
computer lab. Each student (20-25 per session) works on her own
machine. We use a dedicated environment on the lab machines that
allows no network traffic (except for connections to a special server
from which lecture material is available), and through which stu-
dents can start only the programming system (DrScheme in our
case), a web browser, and a PDF viewer. Moreover, the environ-
ment enforces a strict time limit of 90 minutes (Freiburg) or 120
minutes (Tübingen). The dedicated environment has two main ad-
vantages:

• Students cannot do anything except working on their program-
ming problems: they cannot surf the web, they cannot check
their emails, they cannot chat and so on.

• Students cannot cheat easily by exchanging their solutions with
other students. This is especially important if the different ses-
sions happen on different days of the week.

The programming problems posed in the assisted programming
sessions are closely connected with the topics of the lecture (Sec-
tion 2.2). For the theoretical parts of the lecture (mathematical ba-
sics, terms and Σ algebras, λ calculus), we either pose problems
that tie together different aspects of previous sessions, or that put
theory into practice. For example, when dealing with the λ calcu-
lus in the lecture, we implement an interpreter for λ terms in the
assisted programming session.

3. Local Specifics
There are several differences between instances of the course in
Freiburg and Tübingen.

3.1 Freiburg
In this section, we describe the intro course as it took place in
the winter semester 2007/2008 at the University of Freiburg. The
course was worth 9 ECTS credits, which corresponds to 225-270
hours of work in the whole semester.1 The teaching period encom-
passed 15 weeks, excluding a mid-term break of about two weeks.
Participants of the course were bachelor students but also students
who do computer science only as their minor subject.

The students’ workload consisted of the following parts:

Lectures There were two 90-minute lectures per week. See Sec-
tion 2.2 for a description of the material covered.

Exercise sheets and exercise sessions Each week, we published
an exercise sheet which the students had to solve within one
week. To be admitted to the final exam, each student had to
reach a score of 50% of the maximum before and after the mid-
term break. Discussion of the solutions to the exercise sheets
took place during a 90-minutes exercise session among 15-20
students, guided by a teaching assistant.

Assisted programming Students had to participate in a weekly
assisted programming session of 90 minutes. As for the exercise
sheets, each student had to reach a score of 50% before and after
the mid-term break to be admitted to the final exam.

System design project In cooperation with the Department of Mi-
crosystems Engineering, we offered a system design project, in
which students worked together in groups of four to design and
build an autonomous robot using LEGO mindstorms [21]. The

1 Note that two credits in the UK are equivalent to one ECTS
credit. For more information see http://ec.europa.eu/education/
programmes/socrates/ects/index_en.html.



main goal of this project was to stimulate team spirit and team
work among the students.

Exams There were three exams: one practice exam before the mid-
term break, another practice exam at the end of the teaching
period, and the final exam six weeks after the teaching period.
Students needed to pass at least one of the practice exams to
be admitted to the final exams. Moreover, if a student managed
to pass both practice exams, the final exam became optional.
The final grade was calculated as the weighted average of the
grades in the final exam (90%) and the system design project
(10%) or, if the student passed both practice exams, the grades
in the practice exams (45% each) and the system design project
(10%), whichever gave the better result.

We used a semi-automatic tool for marking the students’ submis-
sions to programming problems. The tool parses the input file, ver-
ifies that the code meets the required language level, and then per-
forms several checks [4]:

• Does the function and record definitions asked for in the prob-
lem formulation exist?

• Does the student provide enough test cases? For every problem,
we specified how many test cases were needed.

• Do the student’s functions satisfy the student’s test cases? This
checks that the student’s solution is coherent.

• Does our sample solution satisfy the student’s test cases? This
checks that the student’s test cases are not biased towards the
student’s solution.

• Does the student’s function satisfy our test cases? This checks
whether the student’s solution is, in some sense, correct.

Based on the outcome of these checks, the tool computes a pre-
liminary score. The score is zero if the input file has syntax errors
or does not meet the required language level. The teaching assistant
then examines the solution to ensure that it meets certain conditions
that are hard to check automatically:

• Is the code properly documented?
• Is every function equipped with a type signature?
• Does the code meet our coding conventions?

After this visual inspection, the teaching assistant assigns the final
score.

Using a semi-automatic tool for marking the submissions had
several advantages. First, it reduced the workload of the teaching
assistants significantly. Second, it forced the students to work more
precisely because the tool enforced our requirements on syntax
and functionality of the solution more rigorously than teaching
assistants would when marking completely by hand.

The semi-automatic tool had also some disadvantages. First, it
required more time to work out the programming problems because
we also needed to write the specifications for our tool. Second,
we often had to slightly overspecify the problems to allow for a
sensible specification. For example, we often had to fix the name of
some function or the ordering of the fields of some record.

3.2 Tübingen
This section describes the first year programming course of the
winter semester 2006/2007 at the University of Tübingen.

The attendees of this course were diploma and bachelor stu-
dents. All students were required to pass the exam at the end of the
course. Another requirement was to get credit for either the first- or
second-semester course. For the bachelor students, the course was
worth 8 ECTS credits. The length of the teaching period and the
mid-term break were the same as in Freiburg.

The students’ workload consisted of the following parts:

Lectures As in Freiburg, there were two 90-minutes lectures per
week.

Exercise sheets and exercise sessions As in Freiburg, we pub-
lished weekly exercise sheets, which the students had to solve
within one week. To get the credit, each student had to reach
60% of the maximum score before and after the mid-term break.
The students were allowed and encouraged to solve the exer-
cises in a group of two students. As in Freiburg, there were
weekly exercise sessions guided by a TA. Furthermore, to re-
ceive credit, the students were obliged to attend the exercise
sessions and each students had to present her solution in front
of the group twice during the teaching period.
Two of the exercise sheets where mandatory: They did not
contribute to the score. Instead, each student had to present
the solution separately to the TA, and the TA needed to be
“satisfied” with the solution. In theory, failing to do so meant
that credit was denied but in practice the student would often get
a second chance. The first mandatory exercise sheet took place
very early in the semester and was intended as an opportunity
for the TA to get to know each student individually. The second
mandatory sheet was the last sheet given out and covered a
larger project. The students had two weeks to solve the second
mandatory sheet.

Assisted programming As in Freiburg, we conducted weekly as-
sisted programming sessions. However, ours took 120 minutes.
As for the exercise sheets, each student had to reach 60% of the
maximum score before and after the mid-term break to get the
credit.

Exams and grades There was a single exam about four weeks
after the teaching period. For the diploma students, passing this
exam was necessary for the intermediate diploma which in turn
was a requirement for the diploma itself. However, the grades
from the intermediate diploma did not contribute to the grades
of the diploma. For the bachelor students, passing the exam was
necessary as well and the grade of the exam was relevant for
their degree.
The credit itself had a separate grade but this grade did not
contribute to the intermediate diploma or the bachelor. Thus the
grade was relevant only for students applying for scholarships
or the like.

We did not use a tool for marking the students’ submissions. Instead
the teaching assistant marked each solution to an exercise sheet or
assisted programming session manually. (We are considering using
the tool for the next iteration, however.)

4. Developing the Course
The current course is based on a development that essentially
started with the 1999/2000 Tübingen course: This course marked
the switch to functional programming and Scheme, as well as
DrScheme as the programming environment. Much of the pro-
gramming content was modelled on SICP [1] and Concrete Ab-
stractions [17]. (Note that HtDP was not available in print yet.)

While the use of Scheme enabled us to cover much more mate-
rial in the course than in previous years, we observed that many of
the didactic approaches suggested by SICP and, to a lesser extent,
Concrete Abstractions, did not work as well as we had expected.
(Of course, the TeachScheme! project had made that observation
earlier [11], but we were not aware of these results.)



4.1 The 2004/2005 Course
As a result of the 1999/2000 course, we started the slow process
of improving the course over time. We published a book [19] de-
scribing the course material. When HtDP finally came out, we
adopted the design recipes and made them a central element of
the 2004/2005 course, which was the next intro course the authors
taught. We structured the course according to the book but aug-
mented the material in the lecture with design recipes. Of course,
the examples in the book were not constructed using design recipes
and thus had no contracts or test cases. Thus students saw the ap-
plication of design recipes and their artifacts in the lecture only.

We also used contracts with type variables quite extensively,
even while introducing higher-order functions. Type variables were
explained in the lecture but again not covered in the book. As it
turned out in the exercises and in the exam, the students did not
grasp type variables very well.

Thus, augmenting our book with material from HtDP was not
perceived as a coherent lecture by the students and many thus
formed a negative attitude towards the material.

An initial indication of problems was the general observation
that the noise level was quite high during the lecture: many stu-
dents did obviously not follow the presentation. This was certainly
especially harmful as only the lecture presented the material as in-
tended by us. Also, towards the end of the course, many of the
students had already reached the 60% limit and stopped to work on
the exercises. At this point, the exercises covered the environment
model. In the exam, the students performed badly on this topic.

While the course was running, we commissioned a term project
to observe how students deal with the material of the course outside
of the course and the tutorial sessions [26]. Two observations stood
out:

• The students would freely “cooperate” on the exercises, plagia-
rizing other students’ solutions. Networks of students formed
which circulated solutions, in one observed case reaching the
size of 54 students. This, of cause, voided the intended practice
effect of the exercises.

• The students found the design recipes tedious, especially in the
beginning when the problems were simple. This led to them
ignoring the recipes when actually working on the problems,
and adding the required elements (short description, contract,
test cases, etc.) later. However, many students said they believed
the design recipes would help them later when the problems
would get more challenging.

The latter observation was especially galling in light of the results
in the final exam: A fair number of students had not successfully
solved the programming exercises, and of those who had, many
had done so unsystematically, without the use of the design recipes:
Even though many students had suspected the design recipes might
come in handy when push comes to shove, they could not produce
them when the going got tough.

Alarmed by the bad results in the programming exercises, we in-
terviewed each teaching assistant separately and asked them about
their experience with the students in their groups. Their statements
can be summarized as follows:

1. The TAs did not notice many students having significant prob-
lems solving the programming exercises.

2. Many students did not use the design recipes. Instead they aug-
mented their solution with contracts and test cases afterwards.

3. Students with little or no experience who used the design
recipes found them useful and were able to solve the exercises
with the help of the recipes.

4. There were quite a few students teams (which usually consist
of two students) where one student focused on solving the
programming exercises while the other one took over the ones
related to theory.

5. The TAs did not have the impression that many students plagia-
rized.

In the light of the results in the exam, we concluded that many
students had bluffed the TAs about their programming capabili-
ties. However, we were very encouraged to continue to use design
recipes as they obviously provided helpful for the students who
used them.

4.2 The 2006/2007 Course: Improvements
The 2004/2005 course was a sobering lesson for us: While the re-
sults were formally acceptable, students had not, on the average,
learned programming to the level of proficiency we had hoped.
This was despite our conviction that we had taught the right ma-
terial and structured the course appropriately, with proven didactic
techniques. We saw two possible explanations for the outcome:

• We were simply expecting too much of the students, and the
curse of knowledge was preventing us from seeing clearly what
the students were capable of learning in a single semester.

• We had failed to do everything possible to help the students
learn.

When it came to preparing the 2006/2007 course, we decided that
we would act as though explanation #2 was correct. We already
knew two concrete problems: plagiarism and insufficiently inter-
esting examples and problems in the beginning. We also conjec-
tured that many students plagiarized because they did not develop
sufficient self-confidence in the first few weeks of the course.

We had the opportunity to revise the old textbook for the course,
and rewrote the programming chapters to conform to the HtDP
discipline we had already used in the 2004/2005 course: Proper
introduction to design recipes, and strict adherence to them in
the examples. Developing more interesting examples was quite
easy: We adapted HtDP’s world.ss teachpack for functionally-
programmed reactive animations, and used it for introducing state-
based models.

Moreover, we concluded that our “buddy approach”, trying to
encourage rather than force students to do the exercises themselves
and ask questions when necessary had failed. We decided to ac-
tively fight plagiarism, and enforce a strict discipline both in form
and content for the upcoming semester. In particular:

1. We made students sign a form at the beginning of the course
declaring that they would not plagiarize, and were aware of the
consequences. (“One warning, two strikes you’re out.”)

2. We would actually kick students out of the course after two
strikes of plagiarism.

3. We set aside part of one TA’s time to actively search for plagia-
rism in the students’ solutions.

4. We decided to break out parts of the exercises and have the stu-
dents solve them in the University’s computer lab under super-
vision.2 This lead to the introduction of assisted programming.

5. We would use the final exam as our measure of success, and
differentiate between different subject areas to see how well the
course had worked.

2 The TeachScheme! project, of course, has long used supervised lab exer-
cises to develop their curriculum. Their specific observations are not acces-
sibly documented, however.



The fourth item deserves special attention: We would not only su-
pervise the exercises in the sense of checking that there is no plagia-
rism, but also look over students’ shoulders to actively enforce their
adherence to the design recipes, and push them over the inevitable
bumps in the road that leads to correct and working programs.

Note this was strictly an experiment at the time: We did not
know whether our original explanation for the underperformance
was correct, nor whether these new measures would help. In par-
ticular, relying on enforcement rather than encouragement for self-
managed learning seemed a significant gamble, as self-managed
learning and intrinsic motivation generally promise better re-
sults [6]. We also risked that we would become unpopular with the
students, and that Scheme and/or functional programming would
become similarly unpopular by association. We resolved not to care
about these aspects for the 2005/2006 course. We did, however, de-
velop these measures with the help of the student TAs, who fully
supported them.

4.3 Assisted Programming
Despite our efforts to advertise lab sessions as a form of homework
with assistance, most students initially regarded lab sessions as a
kind of quiz. As a consequence, many students avoided asking the
TAs for help during the session: They either expected that TAs—
as with an official written exam—were not allowed to provide
concrete help or they even believed that asking for help was a
form of cheating. The perception of assisted programming slowly
changed during the semester as the TAs not only provided their help
upon request but also helped proactively as they noticed students
having problems.

The time limit for assisted programming sessions provided ad-
ditional help nudging the students towards using the design recipes:
Some students with an initial resistance to the recipes would say
something like “I’d rather do it myself” when offered help. But
they quickly realized that they would run out of time using their
preferred method of programming-by-tinkering, and so they tried
the design recipes in the end. Many were shocked when they found
out that the recipes worked.

In our experience, designing problem sets with a suitable
amount and difficulty of problems is challenging: The problem
should be new and interesting, solvable with the programming
techniques taught in the lecture, and there should be enough time
for students to make use of the assistance of the TAs. We real-
ized that it is hard to design the exercises so that they are both
challenging to the students and solvable within the restricted time
frame of an assisted programming session. Typically, we conducted
the first session of each week—which starts with a new problem
set—ourselves: This way, confusing problem statements, mistakes,
amount of work, and other unforeseen problems could be addressed
immediately and fixed for the subsequent sessions.

Despite these tactics, we misjudged the complexity of some
problem sets in the beginning for a simple reason: Typically,
weaker students tend to schedule their lab session at the end of
the week — hoping that they benefit from the experiences of other
students that attended an earlier session. With hindsight we knew
that many of our best students always chose the first lab session—
which served as our comparison group to evaluate a problem set’s
appropriateness. This observation led to two insights: First, we
have to take the above-average performance of our comparison
group into account. Second, students attending sessions at the end
of a week may take advantage of the other students’ experiences
with the problem set.

However, we discovered only few cases of cheating during as-
sisted programming. The specialized computer environment al-
ready prevented that students take home their solutions: Submit-
ted solutions were only accessible by TAs. This hindered plagia-

rism as solutions must be reproduced from memory. Some students
procured such a solution, memorized it, and reproduced it during
the lab session. Typically, students share such a solution verbatim,
which makes it easy to identify the solution using our routine check
for plagiarism. Additionally, we sometimes changed the problem
set slightly on an irregular basis during a week.

A common problem consisted of the quantity and quality of
assistance provided during a session. We had underestimated the
amount of work necessary to attend a group of 25 students during
a lab session without having students wait too long for help.

Initially, the introduction of assisted programming encoun-
tered some resistance among students. The university calendar
announced the course with four hour of lectures per week plus
two hours of exercise per week. Our approach, however, requires
four hours of presence in exercises per week: two hours for the reg-
ular tutorial and two hours for assisted programming. The students’
workload, however, is roughly the same as with other courses as
we just moved programming exercises from regular exercises to
assisted programming.

4.4 Results
Final exam We had determined at the beginning of the course
that the final exam would be the primary indicator of success. The
Tübingen final exam is one hour, and we posed a total of nine prob-
lems in the following subject areas: logical calculus, λ calculus,
inductive proofs, ADTs, program proof, (recursive) programming
with lists, higher-order programming, programming with state, en-
vironment model. While more detailed results are available in Sec-
tion 5, the results had generally improved significantly over the
2004/2005 course. Moreover, the students’ programming abilities
were significantly improved. In particular, most students could ap-
ply the design recipes with ease.

Popularity Surprisingly, our much more formal approach to orga-
nizing the course had no significant impact on the popularity of the
course with the students: The course-evaluation poll yielded com-
parable results to the 2004/2005 course across the board.

Comparing with the OO course The course described here was
not taught every year. In particular, the 2005/2006 course was based
using a traditional Java-based OO approach. The final exam of that
course was comparable in the bureaucratic sense (one hour, same
grading scale), but much different in content: six problems instead
of nine, in categories: number representations, class relationships,
various multiple-choice questions, (manual) tree traversals, recur-
sion, class definition. Subjectively, this final exam was much easier
than ours. This, and a conversation with the lecturer, led us to con-
clude that the expectation we had of our students was warranted to
be significantly higher than with the OO approach.

The next course The 2007/2008 course in Tübingen was taught
by a professor who had no prior exposure to functional program-
ming, and never taught an introductory course before. He chose
to follow the content and organization of the previous year quite
closely. The exam results (not reproduced in this paper) are com-
pletely consistent with those of the 2006/2007 course. Thus, taking
into account that several people had held the lecture in previous
years, it appears the approach is robust across lecturers.

5. Analysis
In this section, we present some of the data we have gathered
to gauge the effectiveness of our teaching methods. In particular,
we have tried to measure if assisted programming indeed helped
improve the course. We have also looked at the results of our
exams to identify subject areas that worked well, as well as those
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that still need improvement. While these results are probably not
statistically solid, they provide very useful qualitative information.

5.1 Assisted Programming
Figure 1 compares the students’ performance in the programming
assignments of the final exams between the 2004/2005 Tübingen
course without assisted programming, and the 2006/2007 Tübingen
course with assisted programming. The diagram shows how many
students (y-axis) achieved what score (x-axis). The special cate-
gory “not tried” collects students that did not even try to solve the
programming assignments. The number of students and the score
are given relative to the total number of students and the maxi-
mum score, respectively. It is obvious that the performance of the
students who benefited from assisted programming is significantly
higher than the performance of the students from the earlier course.

5.2 Exam Results
Figure 2 and Figure 3 display the students’ performance in the
practice and final exams, sorted by problem category. Figure 2 list
the results for those categories that are common to Freiburg and
Tübingen, whereas Figure 3 contains results for categories specific
to Freiburg or Tübingen. The Freiburg results come from the course
in 2007/2008, the Tübingen results from the course in 2006/2007.

Here are the most significant results:

• The students did well on the “standard” programming exercises
that involved applying the design recipes.

• The students were quite proficient with the λ calculus, despite
our expectation that they would perform poorly. (Theoretical,
“boring” material.) Our conjecture (for the results in Tübingen)
is that this was caused by making the λ calculus subject of one
of the mandatory exercises, which was really a timing accident
of the 2006/2007 course—one that we gladly repeated in the
following year, with similar success.

• The Freiburg result for abstract data types (Figure 2) is probably
misleading: The students had not performed well with ADTs
during the semester, and such an improvement for the final
exam would have been miraculous. The assignment was proba-
bly too easy. This insight, taken together with the Tübingen re-
sults, show that the treatment of ADTs is problematic and could
be improved.

• The Freiburg assignment on terms (Figure 3) dealt with terms
and their interpretation via Σ algebras. The students did not per-
form well in this assignment because they had not completely
understood the difference between syntax and semantics.
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• For the Freiburg assignment on relations (Figure 3), we conjec-
ture that students did not perform well because they considered
this topic as “too mathematical”.

• The results for the Tübingen assignment on the environment
model (Figure 3) show that the environment model (despite the
use of pictures) is not well suited for explaining mutable state.

5.3 Course Evaluation
We next present the results of an evaluation of the Freiburg
2007/2008 course, which was performed at the end of the teaching
period. About 90 students attended the course, of which about 50
participated in the evaluation.

Most students judged the requirements of our introductory
course as “neutral” or “high”, only few students considered the
requirements as “very high” (Figure 4). The overall numbers of
hours spent per week for our course (including lecture, tutorial ses-
sions, and assisted programming) ranged from 5 to 24 hours, but
the majority of the students (about 70% of the evaluation’s partici-
pants) spent only 12 hours or less (Figure 5).

According to Section 3.1, the course in Freiburg should require
(in average) a total amount of 250 hours of work. Subtracting 40
hours for exam preparations, we are left with 14 hours per week.
Hence, we conclude that we did not stress the students too much.

There were several questions which allowed a free-text answer.
In the following, we summarize the answers to the most interesting
questions.

• What did you like about this course? Students liked the practical
aspects of the course, the assisted programming sessions, and
the overall structure of the course. Another positive point men-
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tioned was that we recorded the lecture so that students could
review it later.

• What did you not like about this course? The students did not
like the mathematical excursion. They also complained about
Scheme. They were unsure whether they could transfer their
knowledge to a different programming language.

• Did your programming skills improved because of the assisted
programming sessions? Most students stated that their pro-
gramming skills had improved due to assisted programming.
The students mentioned the following reasons for this improve-
ment:

Assisted programming forced them to do a great amount of
programming.

Assisted programming gave them the possibility to ask all
kinds of questions.

• For which other courses would assisted programming be help-
ful? The students considered assisted programming helpful for
all further practical courses.

The results from Freiburg were remarkably consistent with the
results of a similar evaluation in Tübingen.

6. Follow-up Courses
The intro course should not only prepare the students for poten-
tial careers in software development, but also provide the neces-
sary prerequisites for follow-up courses in the curriculum. The re-
quirements posed by these courses are different in Freiburg and
Tübingen—however, both intro courses have follow-up courses us-
ing Java. This section summarizes how we handled the transition.

6.1 Freiburg: Crash Course on OO and Java
In Freiburg, the second-semester course on algorithms and data
structures requires students to be fluent in Java. To provide an in-
terface to this course, we set up a one-week full-time adaptation
course that translates their knowledge into basic Java proficiency.
This crash course is based on the ideas underlying the upcoming
book “How to Design Classes” (HTdC) by Felleisen and his collab-
orators (also documented by Proulx and others [22]), but adds some
elements that are dear to the heart of an algorithms instructor. The
important topics are, roughly: data modelling with classes, func-
tional methods, abstraction, imperative methods, and mixed ma-
terial preparing specifically for the algorithms course, with topics
such as arrays and typical programming templates that deal with
arrays.

The first four days rely on ProfessorJ [15], a teaching language
resembling Java which is also implemented in the DrScheme envi-
ronment with similar support for different language levels and in-
teractive debugging as for Scheme. Day five prepares students for
using Eclipse, which is used in the algorithms course.

Following this intensive phase, the course is tapering off at
roughly two hours per week throughout the rest of the semester
and in parallel to the algorithms course. It goes on to cover ad-
vanced topics like abstraction with generics, defining equalities and
comparisons, enumerations, using the collection framework, using
Swing, inner classes and anonymous classes, and so on.

In an evaluation of the crash course, about 84% of the students
answered that they knew enough about Java to be able to follow
the course an data structures and algorithms, and that no topic
was missing. The remaining 16% missed arrays and hash tables.
We discussed arrays in the crash course, but intentionally left out
hash tables because this is a major topic of the algorithms and data
structures course.

The results of the evaluation indicate that students of our in-
troductory course learn Java (a new programming language) rather
quickly. We do not have any hard facts whether this result gen-
eralizes to other programming languages, but we will observe the
students within the next semesters to see how they perform with
respect to this aspect.

6.2 Tübingen: Second-semester Course on OO and Java
In Tübingen, there is a second semester course on programming.
We had the opportunity to teach and design this course ourselves.
The faculty seems to agree that, by end of the second semester,
students should either be fluent in Java or C++, as almost all sub-
sequent courses presume knowledge of these languages. There-
fore, we decided to devote the complete second semester to object-
oriented programming and Java. The significant topics of the course
were similar to the Freiburg course. We added testing with JU-
nit, GUI programming, the MVC model, debugging tools, and the
SECD machine.

In contrast to the Freiburg course the Tübingen course pro-
ceeded at a much slower pace. Twelve lectures (90 minutes each)
were devoted to HtDC and the remaining seven lectures covered
the language features of full Java.

Feedback on this course was mixed: While many students—
with and without prior knowledge of Java—actually appreciated
the design rigor imposed by HtDC and the insights from “Effective
Java” [3], requiring the use of ProfessorJ in the exercises was un-
popular. Students with prior knowledge of Java complained about
the limitations imposed by the various language levels. Moreover,
some students feared that we would not teach “real” Java which
would hinder them in future courses or even on the job market.
However, students without prior knowledge clearly favored the
gradual introduction with ProfessorJ into Java.

7. Conclusions
Teaching the intro course has consistently been a rewarding expe-
rience for us, despite the fact that many of our ideas of the past
did not work in the classroom as well as we had hoped. However,
teaching the course repeatedly and closely looking at the available
documentation of the successes and failures can help to improve it
significantly. This section describes our most import observations,
impressions and conclusions. We start with a short discussion about
the choice of Scheme and conclude with some lessons we have
learned from the courses, including possible improvements and an
outlook on further introductory courses.

7.1 Choice of Programming Language
The general methodology of the approach could also be expressed
in other functional languages such as O’Caml or Haskell. For exam-
ple, pattern matching and algebraic datatypes simplify some of the
design recipes considerably. A pattern match clause is more robust
than a cond expression with a sequence of type tests because the
pattern match can be checked for exhaustiveness. Furthermore, it
was confusing to the students that there was an explicit syntax for
defining record types, whereas sum types had no syntactic coun-
terpart. Their definition is entirely based on programming conven-
tions, for Scheme it is just a comment. An argument against pattern
matching is that the languages that students get to use in their later
worklife do not have pattern matching, either.3

Type inference and type checking could, in principle, avoid frus-
trating test runs that repeatedly fail because of type errors. On the
other hand, type inference is infamous for generating inscrutable
error messages. This is known to be especially discouraging for

3 Matthias Felleisen, personal communication



beginners. In the case of Haskell, the type inference engine may
inadvertently reveal aspects of the language (such as type classes)
that the instructor does not want to get into, yet. This problem has
been recognized [18], but it is not clear that the programming en-
vironments for statically typed languages are up to the needs of
beginning students.

It may be possible to address the problems of explicit sum typ-
ing and checking of conditionals on these types within the language
themselves by changing or extending our DrScheme language lev-
els. We intend to experiment with such an extension next semester.

7.2 Methodology vs. Content
One might conclude from the results reported here that our suc-
cesses are mainly a result of assisted programming as well as other
organizational measures we have taken, and that similar results may
be achieved with traditional content, say the standard Java-based
“OO course”. While nobody seems to have actually tried this and
documented the results, there are strong indications that this would
not work as well as our approach:

• Even before introducing assisted programming, the Tübingen
students performed quite well in comparison to students who
had attended the Java-based course: In particular, our exam
problems have always been significantly more challenging than
those of the Java-based course, while our passing rate was as
good or better.

• The particulars of Scheme occupy very little time in the lec-
ture, which allows us to cover significantly more ground over
the semester. In contrast, Java-based lectures need to spend sig-
nificantly more time on mundane issues such as syntax or other
specific properties of the language.

• Scheme programs are significantly shorter than, say, Java pro-
grams: This allows the students to solve more exercises in the
same amount of time, again increasing the amount of material
we can teach over a single semester.

7.3 Lessons Learned
Here are the most important lessons we have learned from devel-
oping the intro course over the last few years.

• Teaching the intro course well is very difficult. Some of the lec-
turers involved in the course have been teaching programming
since the 1980s, and still find things that could be improved.

• Simply switching to a functional language does not automati-
cally solve the problems of traditional approaches.

• It is necessary to closely observe learning success; evaluating
a course’s success by asking students how well they liked the
course is not sufficient. Rampant plagiarism can mask teaching
failures.

• The TeachScheme! approach is a great prerequisite for teaching
a good intro course. However, it needs to be coupled with
effective course organization to be successful.

• A programming environment tailored for beginning students is
very important. However, many students require more direct
help in assisted programming sessions to succeed writing their
first programs.

• Students have trouble managing their own learning process. In
particular, students often plagiarize instinctively, before having
even tried to solve a given exercise. Moreover, many students
have trouble properly gauging their own abilities. As a result,
many students show an instinctual resistance to the “boring”
approach of the design recipes even though they would fail on
their own.

• In spite of initial concerns, a formal, enforcement-oriented ap-
proach is not unpopular with the students. In contrast, the stu-
dents welcome the additional assisted programming lessons,
even if this means having more workload for the course.

• Improving the intro course is enormously expensive; gaining
a new round of experience requires an entire class, potentially
using it as the guinea pig for new ideas. The work of the Teach-
Scheme! project is an enormous help. Still, we need to find
more effective ways to benefit from each others’ experience.
This process is uniformly hampered by ideological approaches
to designing the course. (“Objects first”, “real-world program-
ming in the intro course”, “functional programming is better”,
“static typing is better”, etc.)

We realize that these observations may, in some instances be
culture-specific. We have consistently observed them in Germany,
however.

7.4 Possible Improvements
Here are some improvements we are considering for future itera-
tions of the course:

Treatment of state and assignment Treating set! in the course
is not a good idea because it complicates the semantics and con-
fuses the students. The next iteration of the course will use records
with mutable fields (similar to reference cells in ML) instead. The
Freiburg group will continue their work on an extended substitution
model with a store, while the Tübingen group will try an alterna-
tive approach based on the SECD machine. Experience will show
which of these models is better suited for introducing students to
assignment and mutable state.

Contracts in the language Contracts are already an essential
part of the design recipes. However, they are only comments. A
formal notation for contracts or types may improve the experience
and practice of writing contracts. Our semi-automatic grading tool
could check the consistency of the contracts, as well as checking
the procedures against their contracts during testing. Moreover, an
automatic testing tool could derive tests from the types following
the ideas of QuickCheck [5].

ADTs The treatment of ADTs has not worked as we had hoped.
This is possibly intrinsic—the first semester may be too early to
introduce the difference between specification and implementation.
Furthermore, the language levels do not provide the abstraction
facilities necessary for effectively hiding implementation details.

7.5 Outlook
The authors of this paper will teach the intro course again in the
2008/2009 semester, both in Freiburg and Tübingen. We plan to
make changes according to the insights described in this paper,
as outlined in the preceding section. We will cooperate closely to
achieve the best possible results, and reduce the amount of work
needed to teach and organize the course. We will again evaluate
how well our changes work. Moreover, we are waiting for impres-
sions from the follow-up courses on how well our students perform
in the future.

We hope that we can find other introductory courses that are
willing to cooperate with us so as to improve the course even fur-
ther, and to develop a body of material—software, sample exer-
cises, instruction manuals—that help other teachers.
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[27] Christian Wagenknecht. Programmierparadigmen. Teubner, 2004.


