
Bootstrapping Higher-Order Program Transformers from Interpreters

Michael Sperber∗

Universität Tübingen
Robert Glück†

University of Copenhagen
Peter Thiemann1

Universität Tübingen

Keywords: meta programming, higher-order programming,
program transformation, partial evaluation

Abstract

Partial evaluation can automatically generate program trans-
formers from interpreters. In the context of functional lan-
guages, we investigate the design space of higher-order in-
terpreters to achieve certain transformation effects. Our work
is based on the interpretive approach and exploits the lan-
guage preservation property of offline partial evaluators.

We have generated higher-order online partial evaluators,
optimizing closure converters, and converters to first-order
tail form. The latter can serve as the middle end of a com-
piler. The generated transformers are strictly more powerful
than the partial evaluators used for their generation.

1 Introduction

Specialization of a self-applicable partial evaluator with re-
spect to an interpreter produces a compiler. This paper in-
vestigates the generation of optimizing program transformers
from interpreters. We study different types of interpreters for
a strict, higher-order functional language, and show how to
use different partial evaluators to achieve closure conversion,
higher-order removal, conversion into tail-recursive form, and
online specialization. Given an appropriate interpreter, the
interpretive approach can drastically change the result of the
transformation [32, 18]. Our interpreters exploit two basic
principles: self-application to generate stand-alone transform-
ers, and the language-preservation property of offline partial
evaluators to transform higher-order constructs.

Using these principles, we have bootstrapped an online
specializer for a higher-order language from an offline partial
evaluator for a first-order language. Writing such a special-
izer by hand is a significant undertaking [29, 33]. Moreover,
∗ Address: Wilhelm-Schickard-Institut, Universität Tübingen, Sand 13,

72076 Tübingen, Germany. {sperber,thiemann}@informatik.uni-tuebingen.de
† Address: DIKU, Department of Computer Science, University of

Copenhagen, Universitetsparken 1, DK-2100 Copenhagen East, Denmark.
glueck@diku.dk

our transformer to first-order tail form is an optimizing ver-
sion of Reynolds’s defunctionalization [27].

This contribution extends previous work on the genera-
tion of program transformers by partial evaluation in several
directions. Whereas previously published experiments deal
with first-order programs, our transformers handle a higher-
order subset of Scheme:

1. A constant-propagating interpreter written in higher-
order Scheme using partially static data structures yields
an online specializer for a higher-order language.

2. An interpreter written in first-order Scheme using par-
tially static data structures results in a converter of higher-
order programs into first-order programs; it performs
higher-order removal and closure conversion.

3. An interpreter written in a first-order, tail-recursive sub-
set of Scheme that propagates constants produces an
online specializer for a higher-order language. It gener-
ates first-order, tail-recursive residual programs which
are easy to compile to native code [13].

Overview Section 2 reviews partial evaluation. Section 3 in-
troduces the specializer projections and the language preserva-
tion property which are crucial to the bootstrapping process.
In Sec. 4, we describe the implementation techniques com-
mon to all our interpreters, and Sec. 5 illustrates the different
transformation effects. Section 6 presents the interpreters in
more detail, and Sec. 7 discusses related work.

2 Background: Flavors of Partial Evaluation

Partial evaluation is an automatic program transformation
that performs aggressive constant propagation: if parts of
the input of a subject program are known at compile time, a
partial evaluator propagates this static input to generate a
specialized residual program. The residual program takes the
remaining, dynamic parts of the input as parameters and pro-
duces the same results as the subject program applied to the
complete input. Partial evaluation can remove interpretive
overhead, and thereby produce significant speed-ups [21].

In this work, we deal with offline and online partial eval-
uation. An offline partial evaluator consists of a binding-time
analysis and a reducer. The binding-time analysis, given the
subject program and the binding time of its arguments, an-
notates each expression in the program with a binding time,
“static” or “dynamic.” The reducer processes the annotated

program and the static part of the input. Driven by the an-
notations, it reduces static expressions and rebuilds dynamic
ones.

An online partial evaluator decides “online” whether to re-
duce or rebuild an expression, based on the static compo-
nents of actual values of the subexpressions. Online partial
evaluators are more powerful than their offline counterparts
because they exploit information about actual values rather
than only their binding times to decide whether to reduce or
rebuild.

In our discussion, we describe the effects of a progression
of features of offline partial evaluators:

Simple partial evaluators treat all data as either completely
static or dynamic. Examples are the Scheme0 specializer of [21],
Unmix, a descendant of the Moscow specializer [28], and early
versions of Similix [5] and Schism [9].

If only parts of data structures are dynamic, partial evalu-
ators should respect such partially static data. Several binding-
time analyses and reducers handle first-order languages with
partially static data [25, 10, 24].

Current partial evaluators such as Similix [4] and Schism [11]
support higher-order languages.

3 Basic Principles

To achieve the transformation effects, we exploit two prin-
ciples: self-application to generate stand-alone transformers
from interpreters, and the language-preservation property of off-
line partial evaluators as the basis for higher-order removal
and conversion to tail form.

Transformer Generation Partial evaluation of interpreters
can generate program transformers [16], a technique called
the interpretive approach [18].

It can also perform compilation: The specification of an
L-interpreter int written in S is

JintKS pL inp = JpLKL inp

where J KL denotes the execution of an L-program, pL is an
L-program, and inp is its input. An S → S-partial evaluator
pe written in S can compile pL into an equivalent S-program
pS by the first Futamura projection [14]:

pS = JpeKS int
sd

pL

The sd superscript of int indicates that pe is to treat the
first argument of int as static, the second as dynamic.

Exploiting repeated self-application, the second and third
Futamura projections describe the generation of compilers
and compiler generators [21].

A generalization of the Futamura projections shows how
to generate a specializer from an interpreter. The key idea is
to use a two-level interpreter [18, 18] 2int which accepts the
input to the interpreted program in a static and a dynamic
component. The interpreter tries to perform each operation
with the static component of the input first; only if this fails,
the dynamic component is consulted. Specialized programs
result from the first specializer projection [16]:

rS = JpeKS 2int
ssd

pL inps.

where inps is the static part of the input and rS is the spe-
cialized program. Analogous to compiler generation, self-
application of the partial evaluator generates stand-alone spe-
cializers and specializer generators.

int pe compiler

H
F

+
S → S

S
−→ H → F

S

2int pe specializer

Figure 1: Compiler and specializer generation (F ⊆ S)

Language Preservation Offline partial evaluators have the
language preservation property: for any sublanguage S′ ⊆ S
which includes all constants, and for any binding-time an-
notated S-program p every dynamic expression of which be-
longs to S′, JpeK p x ∈ S′ holds for arbitrary static x. This
property can be verified by inspecting the specialization phase
of an offline partial evaluator [21].

Let pe be a language-preserving S → S-partial evaluator,
and let int be an interpreter for a higher-order language H
written in a first-order language F ⊆ S. Specializing the H-
interpreter int with respect to a H-program p translates an
H-program into an F -program. Figure 1 illustrates this.

Because pe preserves the F -ness of the subject program,
the residual programs pF = JpeK intsd pH (compiled pro-
gram) and rF = JpeK 2intssd pH inp (specialized program)
are F -programs.

4 Higher-Order Interpreters for Partial Evaluation

Some general remarks apply to all interpreters described in
the next sections. All are recursive-descent interpreters, treat
the same subject language, and use a common flow analysis.

E ∈ Expr, D ∈ Definition,Π ∈ Program

E ::= V | K | (if E E E) | (O E∗) | (P E∗) |
(let ((V E)) E) | (lambda (V) E) | (E E)

D ::= (define (P V ∗) E)
Π ::= D+

Figure 2: Syntax

Our interpreters treat a higher-order, side-effect free sub-
set of Scheme [20]. The syntax is defined in Fig. 2. V denotes
variables, K constants, O primitive operators. We assume.
without loss of generality, that lambda and let expressions
abstract one variable and that defined functions occur only
in applications.

Fig. 3 shows the ancestor of our interpreters. The meta-
language is a call-by-value lambda calculus enriched with
constants, sums, and products. The notation Value∗ → Value
abbreviates the sum of () → Value, Value → Value, Value ×
Value → Value, etc. We have omitted the injection tags and
case analysis for the elements of Value.

Exploiting Flow Information Most optimizing transforma-
tions for higher-order programs depend on flow information
to do their work. Similarly, our interpreters perform an equa-
tional flow analysis [6] on the input program prior to inter-
pretation proper. After assigning a flow-variable to each ex-
pression and binding occurrence of a variable, the flow anal-
ysis partitions the flow variables into flow classes. Each flow
class consists of the flow variables of expressions the values
of which may flow together during execution.

Value = BaseValue + Value→ Value
ρ ∈ Env = Var→ Value
ψ ∈ ProcEnv = Procedure→ Expr
KJ_K : Constants→ Value
OJ_K : Operators→ Value∗ → Value
EJ_K : Expr→ ProcEnv→ Env→ Value

EJV Kψρ = ρJV K
EJKKψρ = KJKK
EJ(if E1 E2 E3)Kψρ = if (EJE1Kψρ)

(EJE2Kψρ) (EJE3Kψρ)
EJ(O E1 . . . En)Kψρ = OJOK(EJE1Kψρ, . . . , EJEnKψρ)
EJ(P E1 . . . En)Kψρ = EJψ(P)K[Vi 7→ EJEiKψρ]
EJ(let ((V E1)) E2)Kψρ = EJE2Kψρ[V 7→ EJE1Kψρ]
EJ(lambda (V) E)Kψρ = λy.EJEKψρ[V 7→ y]
EJ(E1 E2)Kψρ = (EJE1Kψρ)(EJE2Kψρ)

Figure 3: A standard call-by-value interpreter

In the closure-converting interpreters, the interpreter must
represent some closures as dynamic data structures. The flow
information comes into play when a dynamic closure reaches
an application. The interpreter tests it against all lambdas
which could have generated the closure by traversing the
corresponding flow class. Thanks to this binding-time im-
provement, The Trick [21], it is possible to keep the expression
argument to the interpreter.

The closure-converting interpreters use flow information
to compute which closures they need to represent by dy-
namic data, so as to ensure termination.

5 Dimensions of Program Transformation

We illustrate the different transformation effects achieved by
partial evaluation of the three different interpreters with re-
spect to the same example program—a version of a list ap-
pend procedure written in continuation-passing style.

(define (append x y)

(cps-append x y (lambda (x) x)))

(define (cps-append x y c)

(if (null? x)

(c y)

(cps-append (cdr x) y

(lambda (xy)

(c (cons (car x) xy))))))

Our interpreters transform the above program in several
different ways, performing specialization and closure con-
version to varying degrees. All the examples have in com-
mon that constructs that the interpreter handles in the same
way as the straightforward interpreter in Fig. 3 are merely
transliterated from subject to residual program. Wherever
the interpreter uses nonstandard techniques, such as con-
stant propagation or closure passing, actual transformations
take place.

Higher-Order Online Partial Evaluation Specializing the
constant-propagating, higher-order interpreter (Sec. 6.1) with
respect to the append program, with x 7→ (foo bar) static,
and y dynamic, performs online specialization, resulting in:

(define (s1-2int-skeleton-0 xd*_0)

(cons ’foo (cons ’bar (car xd*_0))))

Higher-Order Removal Specializing the first-order, higher-
order-removing interpreter (Sec. 6.2) with respect to the append
program and dynamic input produces a residual program
with explicit closure passing. Closures are represented as
lists (` . v∗) of a closure label ` and the values v∗ of its free
variables. Label 4 denotes the identity, 17 the inner continu-
ation.

(define (s1-int-0 x*_0)

(define (s1-eval-0-1 a*_0 a*_1 a*_2)

(if (null? a*_2)

(loop-0-2 (car a*_0) a*_0 a*_1)

(s1-eval-0-1 (list 17 a*_0 a*_2) a*_1 (cdr a*_2))))

(define (loop-0-2 dyn-nr_0 dyn-cl_1 rand_2)

(if (equal? 4 dyn-nr_0)

rand_2

(let* ((dd_4 (cdr dyn-cl_1)) (g_5 (car dd_4)))

(loop-0-2

(car g_5)

g_5

(cons (car (car (cdr dd_4))) rand_2)))))

(s1-eval-0-1 (list 4) (car (cdr x*_0)) (car x*_0)))

Higher-Order-Removing Partial Evaluation Specializing the
constant-propagating first-order tail-recursive interpreter (Sec. 6.3)
treats the continuation as dynamic. Therefore, explicit clo-
sures appear in the residual code. However, if the first argu-
ment x is the static list (foo bar), the interpreter encodes the
list in the closure representation, eliminating the null? test:

(define (s1-int-$1 cv-vals)

(s1-eval-$8 (car cv-vals)

’(17 (4) (foo bar))

’(bar)))

(define (s1-eval-$8 cv-vals-$1 cv-vals-$2 cv-vals-$3)

(if (equal? 4 (car cv-vals-$2))

(cons (car cv-vals-$3) cv-vals-$1)

(s1-eval-$8 (cons (car cv-vals-$3) cv-vals-$1)

(cadr cv-vals-$2)

(caddr cv-vals-$2))))

6 Bootstrapping Transformers from Interpreters

In this section, we describe the interpreters used to gener-
ate the program transformers. They demonstrate a trade-off
between the versatility of the partial evaluator and the com-
plexity of the interpreter. As we ignore features of the partial
evaluator or use a weaker one, the interpreters get more com-
plex.

6.1 Bootstrapping a Higher-Order Online Specializer

In our first application we use the specializer projections to
generate a H → H-online specializer by specializing a two-
level H-interpreter. We use the offline partial evaluator Sim-
ilix [4] which handles a higher-order dialect of Scheme with
partially static algebraic data types.

The choice of an appropriate data representation is crucial
for effective specialization. The interpreter uses the type

Data ::= Atom (SchemeValue)
| Cons (Data ×Data)
| Closure (Label ×Data∗)
| Value (SchemeValue)

The interpreter propagates Data values such that the con-
structor is always static. The binding times of the compo-
nents are independent of each other.

The arguments of Atom are static first-order Scheme val-
ues. Cons is for data structures. Closure objects represent
partially static closures with the label of a lambda abstraction
and a list of the values of the free variables. The argument
of Value is an arbitrary Scheme value, first-order or higher-
order.

Atom marks a fully static value whereas Value marks a
fully dynamic value. Cons and Closure construct partially
static data. The interpreter uses a static conversion function
to transform arbitrary data into a dynamic Value object. This
is different to offline partial evaluators which only lift first-
order values.

Propagating information of Data values creates two prob-
lems for partial evaluation:

Loss of constructor information The binding-time analy-
ses used in most offline partial evaluators treat the result of
a dynamic conditional (if E0 E1 E2) with E0 dynamic as
fully dynamic, and do not propagate constructor informa-
tion from the branches. Therefore, the Value/Closure dis-
tinction is lost in a dynamic conditional, which in turn forces
the binding-time analysis to treat all values in the interpreter
as dynamic, and forfeits all optimization. Consequently, the
interpreter needs to “re-attach” (eta-expand) the constructor
information to the result of a dynamic if:

(Value (if (get-Value EJE0Kψρ)
(get-Value EJE1Kψρ)
(get-Value EJE2Kψρ)))

Get-Value extracts the value from a Value object. As the
above code assumes that the result of the branches is a Value
object, the interpreter must coerce all values that might be the
result of a dynamic conditional into Value objects, thereby
dynamizing them.

Nontermination If a subject program has parameters that
grow statically under dynamic control, the transformation
does not terminate as is. A prominent example is the continu-
ation parameter of a recursive function written in continuation-
passing style where the recursion is under dynamic control.
The interpreter needs to detect these situations and dynamize
the accumulating parameters.

To achieve the dynamization of accumulating data when
necessary, the interpreter dynamizes all values in the current
environment when it encounters a dynamic conditional or
dynamic lambda [5], thereby removing them from the view
of the partial evaluator and causing it to insert a memoization
point which results in a specialized residual function which
can be re-used, thereby avoiding infinite unfolding.

6.2 Bootstrapping a Higher-Order Remover

Our second interpreter exploits the language-preservation prop-
erty to convert a higher-order program into a first-order pro-
gram. The interpreter uses partially static data structures,
but no higher-order functions. Agin, we use Similix.

The interpreter represents higher-order functions by clo-
sures. When evaluating a lambda expression, it produces a
list containing the flow variable (closure label) of the lambda
and the values of its free variables. An application of a dy-
namic closure finds the lambda expression of the closure, cre-
ates a new environment from the values of the free variables,
and continues interpretation with the lambda body.

Value = BaseValue + Label× Var× Env
ψ ∈ ProcEnv = (Procedure + Label)→ Expr

EJ(lambda` (V) E)Kψρ = (`, V, ρ)
EJ(E1 E2)Kψρ = let (`, V, ρ′) = EJE1Kψρ

in EJψ(`)Kρ′[V 7→ EJE2Kψρ]

Figure 4: Standard interpreter after closure conversion

Straightforward application of this approach treats all clo-
sure representations as dynamic. Whenever an application
is reached, an instance of The Trick described in Sec. 4 loops
over the lambda bodies that could possibly reach the applica-
tion, and continues evaluation using the body found.

It is possible to avoid building many closures at run time
by keeping them static, exploiting the constant propagation
of the partial evaluation process to propagate lambdas through
the program. This achieves actual higher-order removal [7].
To distinguish between closures propagated during transfor-
mation (“static”) and those created at run time (“dynamic”),
the interpreter uses a rudimentary two-level representation
which is a reduced version of the data representation of the
online specializer in Sec. 6.1

Data ::= Value (SchemeValue) | Closure (Label ×Data∗)

Since, for this interpreter, all conditionals are dynamic,
the dynamization strategy of the online specializer is not ap-
plicable here. Instead, the dynamization is controlled by an
offline dynamization analysis which marks all lambda expres-
sions which must evaluate to dynamic closures. It uses the
results of the flow analysis. When the interpreter avoids the
above problems as described, specialization always termi-
nates.

6.3 Bootstrapping a Higher-Order-Removing Online Spe-
cializer

The language-preservation property applies equally well to
two-level interpreters, and the specializers generated from
them: if the two-level interpreter is written in first-order, tail-
recursive style, so are the residual programs. Thus, the re-
sulting transformer performs higher-order removal and spe-
cialization in one pass.

Now, we use Unmix to specialize the interpreter. As Un-
mix has neither partially static data structures nor higher-
order functions, the interpreter turns a simple-minded first-
order offline partial evaluator into a much more powerful
higher-order online specializer which supports partially static
data structures.

We have extended the higher-order removal interpreter
to a two-level interpreter, and encoded partially static data
structures by splitting them into a completely static and a
completely dynamic part. We changed the closure-converting
interpreter as follows.

Completely static value descriptions (quote-desc K) take
the part of values. Since the specializer must handle par-
tially static data, the dynamic components of value descrip-
tions are references to configuration variables (cv-desc int)
the values of which are stored in a separate environment.
Value descriptions have the following form:

desc ::= (quote-desc K)
| (cons-desc desc desc)
| (closure-desc ` desc∗)
| (cv-desc int)

Our approach extends that of Glück and Jørgensen [18]
by closures. Configuration variables are numbered. Conse-
quently, the environment consists of three components: (i) a
static program variable environment mapping program vari-
able identifiers to value descriptions, (ii) a static list of con-
figuration variable numbers currently in use, and (iii) a dy-
namic list of the values of the configuration variables.

Since the return value of the interpretation function is dy-
namic, the data structure information that is supposed to be
present in the value description is lost when cons is treated
as a normal primitive. To preserve the static parts of data
structures, it is necessary to treat those expressions specially
which the interpreter can translate directly into value descriptions—
the simple expressions:

SE ::= V | K | (O SE∗) | (lambda (V) E)

The translation of simple expressions into descriptions is straight-
forward and static.

The syntax of the input language of the two-level inter-
preter allows only simple expressions as arguments to pro-
cedure calls, as operands to applications, as conditional tests,
and as operands to car, cdr, and cons. A desugaring phase
before the actual interpretation converts programs into the
restricted syntax, inserting lets to pull non-simple expres-
sions out of contexts where they are not allowed. With these
changes, the interpreter preserves the structure of partially
static data.

With the introduction of simple expressions, the burden
of actual evaluation gets placed on let which allows general
expressions in both positions. The naive way to handle let
generalizes the bound expression and puts it in the configu-
ration variable environment. A better way is to extend the
approach of [18]: when a (let ((V E1)) E2) is encoun-
tered, the variable V and E2 are put on a stack of pending
lets, along with the current program variable environment.
Evaluation proceeds with E1. When the interpreter returns
from a simple expression, it checks for a pending let, and, if
there is one, performs the binding continuing with E2. Oth-
erwise, interpretation is complete.

To prevent the configuration variable environment from
growing without bounds, the interpreter normalizes it when
the set of accessible configuration variables changes, that is,
when the interpreter applies a dynamic closure, and when it
pops the stack of pending lets. Only the accessible configu-
ration variables remain and are renumbered canonically.

With these changes, the interpreter performs online spe-
cialization. As a side effect of the introduction of simple ex-
pressions, the interpreter never calls itself in a non-tail posi-
tion. In all places where non-tail calls occur in the original
interpreter, the restricted syntax allows only simple expres-
sions which can be converted to value descriptions statically.

7 Related Work

The only online partial evaluator for a realistic, higher-order,
functional language we know of is Fuse by Ruf [29], Weise,
and others [33]. Mogensen reports an online partial evalu-
ator for the lambda calculus [26]. Other online approaches
that go beyond constant propagation in a first-order setting
are supercompilation [31, 19], and generalized partial com-
putation [15].

Our work extends previous work that uses the interpre-
tive approach to achieve transformation effects. Turchin [32]
shows that the interpretive approach makes transformations
possible which the direct application of supercompilation to

a subject program cannot perform. The generation of special-
izers and the bootstrapping process is discussed by Glück [16].
Glück and Jørgensen [18, 17] use the interpretive approach
to generate Wadler’s deforestation algorithm and a version
of Turchin’s supercompiler using an offline partial evaluator.
However, they treat only first-order languages.

Past attempts at compilers for higher-order languages gen-
erated by partial evaluation have always produced higher-
order target code because the interpreters were written in
higher-order languages. Bondorf [3] studies the automatic
generation of a compiler for a lazy higher-order functional
language from an interpreter. Jørgensen shows that opti-
mizing compilers for realistic functional languages can be
generated by rewriting an interpreter [22, 23]. Consel and
Danvy [12] use partial evaluation to compile Algol to tail-
recursive Scheme. They attribute their success to sophisti-
cated features of their partial evaluator, Schism, such as par-
tially static data structures, combinator extraction, and higher-
order functions.

The first mention of higher-order removal or defunction-
alization is due to Reynolds [27]. Compilers for functional
languages [2, 1, 13] achieve closure conversion with a manu-
ally developed transformation algorithm, not by specializa-
tion. Ordinary closure conversion does not create specialized
versions of higher-order functions and does not look across
function boundaries.

Chin and Darlington [7, 8] give a higher-order removal
algorithm for lazy functional languages. However, the re-
sulting program may still be higher-order and closure con-
version is not the aim of the algorithm.

8 Conclusion

We have used interpreters for a strict, higher-order functional
language to perform a variety of useful program transfor-
mation tasks, among them optimizing closure conversion,
conversion to tail form, and online specialization. Whereas
previously published experiments deal with first-order pro-
grams, our transformers handle a higher-order subset of Scheme.
This paper reports the automatic generation of higher-order
online specializers, and of optimizing higher-order removers.

The more powerful the partial evaluator, the easier it is
to write the corresponding interpreters. The presence of par-
tially static data structures and higher-order partial evalua-
tion, independently, simplifies the interpreters, but they are
not necessary.

It is also remarkable that the generated specializers are
more powerful than the partial evaluators used to generate
them. One single interpreter specialized with a simple first-
order partial evaluator without partially static data structures
can generate a significantly more powerful online specializer
which performs aggressive constant propagation, higher-order
removal, and conversion to tail form.

Moreover, we used a partial evaluator for a first-order
language to bootstrap a partial evaluator for a higher-order
language. The original higher-order interpreter was written
in a first-order subset of Scheme and converted into a par-
tial evaluator according to the specializer projections. It is
easy to imagine similar interpreters for other higher-order
languages.

Generating the transformers from interpreters is simpler
than writing the transformers directly. The underlying par-
tial evaluator optimizes information propagation through the
program if the the interpreter is suitably written. It remains
to choose appropriate dynamization strategies to prevent non-
termination.

References

[1] APPEL, A. W. Compiling with Continuations. Cambridge
University Press, 1992.

[2] APPEL, A. W., AND JIM, T. Continuation-passing,
closure-passing style. In Proc. 16th Annual ACM Sym-
posium on Principles of Programming Languages (Austin,
Texas, Jan. 1989), ACM Press, pp. 293–302.

[3] BONDORF, A. Self-applicable partial evaluation. PhD the-
sis, DIKU, University of Copenhagen, 1990. DIKU Re-
port 90/17.

[4] BONDORF, A. Similix 5.0 Manual. DIKU, University of
Copenhagen, May 1993.

[5] BONDORF, A., AND DANVY, O. Automatic autoprojec-
tion of recursive equations with global variables and ab-
stract data types. Science of Computer Programming 16, 2
(1991), 151–195.

[6] BONDORF, A., AND JØRGENSEN, J. Efficient analyses
for realistic off-line partial evaluation. Journal of Func-
tional Programming 3, 3 (July 1993), 315–346.

[7] CHIN, W.-N. Fully lazy higher-order removal. In
Proc. ACM SIGPLAN Workshop on Partial Evaluation and
Semantics-Based Program Manipulation PEPM ’92 (San
Francisco, CA, June 1992), C. Consel, Ed., Yale Univer-
sity, pp. 38–47. Report YALEU/DCS/RR-909.

[8] CHIN, W.-N., AND DARLINGTON, J. Higher-order
removal transformation technique for functional pro-
grams. In Proc. of 15th Australian Computer Science Con-
ference (Hobart, Tasmania, Jan. 1992), pp. 181–194. Aus-
tralian CS Comm Vol 14, No 1.

[9] CONSEL, C. New insights into partial evaluation: the
Schism experiment. In ESOP ’88 (Nancy, France, 1988),
H. Ganzinger, Ed., vol. 300 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 236–246.

[10] CONSEL, C. Binding time analysis for higher order un-
typed functional languages. In Proc. 1990 ACM Confer-
ence on Lisp and Functional Programming (Nice, France,
1990), ACM Press, pp. 264–272.

[11] CONSEL, C. A tour of Schism. In Proc. ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-Based Pro-
gram Manipulation PEPM ’93 (Copenhagen, Denmark,
June 1993), D. Schmidt, Ed., ACM Press, pp. 134–154.

[12] CONSEL, C., AND DANVY, O. Static and dynamic se-
mantics processing. In Proc. 18th Annual ACM Sympo-
sium on Principles of Programming Languages (Orlando,
Florida, Jan. 1991), ACM Press, pp. 14–24.

[13] FRIEDMAN, D. P., WAND, M., AND HAYNES, C. T.
Essentials of Programming Languages. MIT Press and
McGraw-Hill, 1992.

[14] FUTAMURA, Y. Partial evaluation of computation pro-
cess — an approach to a compiler-compiler. Systems,
Computers, Controls 2, 5 (1971), 45–50.

[15] FUTAMURA, Y., NOGI, K., AND TAKANO, A. Essence
of generalized partial computation. Theoretical Comput.
Sci. 90, 1 (1991), 61–79.

[16] GLÜCK, R. On the generation of specializers. Journal of
Functional Programming 4, 4 (Oct. 1994), 499–514.

[17] GLÜCK, R., AND JØRGENSEN, J. Generating optimizing
specializers. In IEEE International Conference on Computer
Languages 1994 (Toulouse, France, 1994), IEEE Com-
puter Society Press, pp. 183–194.

[18] GLÜCK, R., AND JØRGENSEN, J. Generating transform-
ers for deforestation and supercompilation. In Static
Analysis (1994), B. Le Charlier, Ed., vol. 864 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 432–448.

[19] GLÜCK, R., AND KLIMOV, A. V. Occam’s razor in meta-
computation: the notion of a perfect process tree. In
Static Analysis (Padova, Italia, Sept. 1993), G. Filé, Ed.,
vol. 724 of Lecture Notes in Computer Science, Springer-
Verlag, pp. 112–123.

[20] IEEE. Standard for the Scheme programming language.
Tech. Rep. 1178-1990, Institute of Electrical and Elec-
tronic Engineers, Inc., New York, 1991.

[21] JONES, N. D., GOMARD, C. K., AND SESTOFT, P. Partial
Evaluation and Automatic Program Generation. Prentice-
Hall, 1993.

[22] JØRGENSEN, J. Compiler generation by partial evalua-
tion. Master’s thesis, DIKU, University of Copenhagen,
1991.

[23] JØRGENSEN, J. Generating a compiler for a lazy lan-
guage by partial evaluation. In Proc. 19th Annual
ACM Symposium on Principles of Programming Languages
(Albuquerque, New Mexico, Jan. 1992), ACM Press,
pp. 258–268.

[24] LAUNCHBURY, J. Projection Factorisations in Partial Eval-
uation, vol. 1 of Distinguished Dissertations in Computer
Science. Cambridge University Press, 1991.

[25] MOGENSEN, T. . Separating binding times in lan-
guage specifications. In Proc. Functional Programming
Languages and Computer Architecture 1989 (London, GB,
1989), pp. 14–25.

[26] MOGENSEN, T. . Self-applicable online partial evalua-
tion of pure lambda calculus. In Proc. ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-Based Pro-
gram Manipulation PEPM ’95 (La Jolla, CA, June 1995),
W. Scherlis, Ed., ACM Press, pp. 39–44.

[27] REYNOLDS, J. C. Definitional interpreters for higher-
order programming languages. In ACM Annual Confer-
ence (July 1972), pp. 717–740.

[28] ROMANENKO, S. A. A compiler generator produced by
a self-applicable specializer can have a surprisingly nat-
ural and understandable structure. In Partial Evaluation
and Mixed Computation (1987), D. Bjørner, A. P. Ershov,
and N. D. Jones, Eds., North-Holland, pp. 445–464. Pro-
ceedings of the IFIP TC2 Workshop on Partial Evalua-
tion and Mixed Computation.

[29] RUF, E. Topics in Online Partial Evaluation. PhD the-
sis, Stanford University, Stanford, CA 94305-4055, Mar.
1993. Technical report CSL-TR-93-563.

[30] THIEMANN, P., AND GLÜCK, R. The generation of
a higher-order online partial evaluator. In Fuji Inter-
national Workshop on Functional and Logic Programming
(Nov. 1995), M. Takeichi and T. Ida, Eds., World Scien-
tific, pp. 239–253.

[31] TURCHIN, V. F. The concept of a supercompiler. ACM
Transactions on Programming Languages and Systems 8, 3
(July 1986), 292–325.

[32] TURCHIN, V. F. Program tranformation with metasys-
tem transitions. Journal of Functional Programming 3, 3
(July 1993), 283–313.

[33] WEISE, D., CONYBEARE, R., RUF, E., AND SELIGMAN,
S. Automatic online partial evaluation. In Proc. Func-
tional Programming Languages and Computer Architecture
1991 (Cambridge, MA, 1991), J. Hughes, Ed., no. 523
in Lecture Notes in Computer Science, Springer-Verlag,
pp. 165–191.

