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Abstract

One of the flagship applications of partial evaluation is com-
pilation and compiler generation. However, partial eval-
uation is usually expressed as a source-to-source transfor-
mation for high-level languages, whereas realistic compilers
produce object code.

We close this gap by composing a partial evaluator with
a compiler by automatic means. Our work is a successful
application of several meta-computation techniques to build
the system, both in theory and in practice. The composition
is an application of deforestation or fusion.

The result is a run-time code generation system built
from existing components. Its applications are numerous.
For example, it allows the language designer to perform
interpreter-based experiments with a source-to-source ver-
sion of the partial evaluator before building a realistic com-
piler which generates object code automatically.

Keywords semantics-directed compiler generation, partial
evaluation, compilation of higher-order functional lan-
guages, run-time code generationy

1 Introduction

Both partial evaluation and run-time code generation (RTCG)
are program optimization techniques that have received con-
siderable attention in the language implementation commu-
nity. The literature describes partial evaluation as an opti-
mizing program transformation based on constant propaga-
tion and memoization of generated procedures. Most par-
tial evaluators perform a source-to-source transformation.
In RTCG, on the other hand, the focus is on dynamically
generating code fragments at run time and executing them.

Recently, researchers have begun to notice that partial
evaluation terminology and techniques are suitable for spec-
ifying and implementing RTCG: Offline partial evaluation
generates the output (or residual) program by stitching to-
gether pre-fabricated fragments of the source program, in-
serting constants in pre-determined places. Generic tech-
niques for RTCG assemble pre-fabricated fragments of ob-
ject code (usually called templates) in a similar manner [8,
9, 38,39].
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Since then, systems have been developed that implement
RTCG with the help of partial evaluation tools [8, 9]. No-
tably, the binding-time analysis, which is a vital part of ev-
ery offline partial evaluator, can automatically determine a
proper staging of computations and thus guide the construc-
tion of the object code templates.

However, most implementations of partial evaluation sys-
tems work at the source level; with these systems, to obtain
object code on-the-fly, it is necessary to employ reflection
through eval procedures or similar means, thereby incur-
ring significant compilation or interpretation overhead [58].
Partial evaluation systems which directly generate object
code exist; however, their implementation usually involves
hand-written code generation primitives [14,26]. The imple-
mentation of many RTCG systems is complex and requires
ad-hoc modifications to existing compilers or rewriting of
components from scratch.

We describe how to obtain a portable partial evaluation
system for Scheme [49] which directly generates object code
in an essentially automatic way, by composing a partial eval-
uation system with a compiler. For the composition, no
knowledge of the internal workings of the compiler (or even
the nature of the output code) or the partial evaluator is
necessary. We achieve the composition itself automatically
through a specialization technique—deforestation [62]. Our
methods allow for the automatic generation of run-time code
generation systems.

Our system is modular by construction: It is possible
to modify the partial evaluation system without keeping in
mind object code generation issues, and to replace the com-
piler without any changes to the partial evaluation system
or even “glue code” (which is generated automatically.) In
fact, in our implementation, compiler and partial evaluation
system were developed independently of each other.

As it turns out, the components of our system naturally
complement each other: The partial evaluation system al-
ready generates code in a subset of Scheme especially suited
for compilation and on-the-fly code generation. This allows
us to use a simple compiler and to circumvent several anal-
ysis steps in the compiler of the underlying Scheme system.

To summarize, the contributions of our work are the fol-
lowing:

• We present a formalization of the specialization phase
of an offline partial evaluator for a higher-order core
language resembling Scheme.

• We show how to convert a recursive-descent compiler
automatically into a set of code generation combina-
tors.



• We show how to automatically compose the combina-
tors with a partial evaluator using deforestation.

• We have implemented our techniques in the frame-
work of an existing partial evaluation system [57] and
Scheme 48 [31], a byte-code implementation of Scheme.

• We have compiled realistic programs and run bench-
marks that confirm the expected benefits of the sys-
tem.

Our work has a number of immediate applications:

• For straightforward use in partial evaluation, our sys-
tem avoids the compilation step for residual programs,
thus speeding up the turnaround cycle in experimental
applications of partial evaluation.

• The system facilitates the automatic construction of
true compilers: It maps a language description (an
interpreter) to a compiler that directly generates low-
level object code.

• Our system allows the creation and execution of cus-
tomized code at run time, thereby performing some
“classic” jobs of RTCG systems.

• The system makes realistic incremental specialization
feasible which not only allows for the implementation
of dynamically evolving programs, but can also avoid
termination problems in partial evaluation [58].

Since our implementation is based on a byte-code lan-
guage system, we have not addressed native-code genera-
tion issues such as register allocation or code optimization.
We believe these issues to be largely orthogonal to our tech-
nique.

Overview Because the implementation of our system was
surprisingly simple, we give the history of the implementa-
tion process in Sec. 2. Section 3 gives some background on
partial evaluation and program generator generators (PGG’s).
Section 4 introduces the concrete partial evaluation frame-
work used in our current work. Section 5 describes the the-
oretical background of our work. In Sec. 6, we present the
techniques we used in the implementation. Benchmarks are
the subject of Sec. 7. Section 8, finally, gives an account of
related work.

2 Run-Time Code Generation Made Easy

The script for our “RTCG production” turns out to be sur-
prisingly simple.

Cast Peter and Mike, two programmers.

Setting Autumn 1996, a crowded university office in Tübingen,
Germany, containing two desks with workstations.

Each of the workstations has installed a language sys-
tem, in this case Scheme 48 [31], and a partial eval-
uator [29], or, better, a program generator generator
(PGG) [35,57], which works on the same language sys-
tem.

The acts of the production correspond to the technical
descriptions in Sections 6.1–6.4.

2.1 Act 1: Write a Compiler

Mike writes a simple compiler for the language system. The
compiler needs to handle the output language of the partial
evaluation process. As Peter, the author of the PGG can
tell, that language happens to be in A-normal form (ANF), a
small subset of Scheme especially suitable for effective com-
pilation.

Mike chooses to chop down the stock Scheme 48 com-
piler to a compiler for programs in ANF and to introduce a
few obvious optimizations possible through that. The new
compiler uses exactly the same syntax dispatch and code
generation conventions as the normal compiler, and is there-
fore seamlessly integrated with the base language system.
In principle, this step can be avoided given a suitable ANF
compiler.

2.2 Act 2: Annotate the Compiler

Peter obtains the compiler from Mike and decorates it with
binding-time annotations. Peter resists learning about the
internal workings of the compiler and the code-generation
issues involved even though Mike assures him it is all very
simple. However, Peter just needs to know where the com-
piler generates code—not how. Peter merely prefixes code-
generating expressions in the compiler by an operator that
causes them to be delayed until code-generation time. The
syntax dispatch remains unchanged. Even when Peter is
finished, he has no idea how the code works. Neither does
Mike, poring over the code, understand the subtleties of Pe-
ter ’s annotations.

2.3 Act 3: Implement the Annotations

Peter writes macros that will simply ignore the annotations,
so the result is still usable as an ordinary compiler. He writes
a second set of macros which turn the compiler functions
into combinators. These combinators will replace counter-
parts in the PGG normally responsible for producing output
code in the source language. The new combinators directly
produce object code. Both jobs turn out to be reasonably
straightforward.

2.4 Act 4: Test and Debug

Peter and Mike get together at a terminal to hook up the
PGG with the new code generation combinators. Tension
is high because the components have been developed sepa-
rately, have not been tried in combination, debugging sup-
port at the object code level is minimal, and the paper dead-
line is approaching. Will they make it?

Right off, Peter and Mike find a number of embarrassing
bugs in the binding-time analysis of the PGG, and even more
embarrassing bugs in Mike’s original compiler. They also
have to resolve some integration issues that have to do with
the fact that the new program generators manipulate object
code generators rather than source expressions.

To their surprise and slight disappointment, there are no
conceptual problems, and no hackery whatsoever is neces-
sary to ensure that the compiler is usable both as a normal
source code compiler and as a generator for the code gener-
ation combinators.

Curtain



M ::= V
| (let (x M1) M2)
| (if0 M1 M2 M3)
| (@ M0 M1 . . .Mn)
| (O M1 . . .Mn)

V ::= c | x | (λx1 . . . xn.M)

V ∈ Values
c ∈ Constants
x ∈ Variables
O ∈ Primitives

Figure 1: Abstract syntax of Core Scheme expressions (CS)

M ::= V
| (let (x V ) M)
| (if0 V M1 M2)
| (@ V V1 . . . Vn)
| (let (x (@ V V1 . . . Vn)) M)
| (O V1 . . . Vn)
| (let (x (O V1 . . . Vn)) M)

V ::= c | x | (λx1 . . . xn.M)

Figure 2: Syntax of CS terms in A-normal form

3 Partial Evaluation and PGG’s

Partial evaluation [7, 29] is an automatic program special-
ization technique. It operates on a source program and its
known (static) input. The specialized residual program takes
the remaining (dynamic) input and delivers the same result
as the source program applied to the whole input. Often,
the residual program is faster than the source program.

An attractive feature of partial evaluation is the ability
to construct generating extensions. A generating extension
for a program p with two inputs s-inp and d-inp is a pro-
gram p-gen which accepts the static input s-inp of p and
produces a residual program ps-inp. The residual program

accepts the dynamic input d-inp and produces the same
result as JpK s-inp d-inp, provided both p and ps-inp ter-

minate.

Jp-genK s-inp = ps-inp
Jps-inpK d-inp = result

JpK s-inp d-inp = result

A generating extension results from applying a program-
generator generator (PGG) to p. A PGG can result from
double self-application of a partial evaluator as described
by the third Futamura projection [20,29,61], or from direct
implementation [35,57].

4 Specializing Core Scheme

The building blocks of the system are a PGG for a large sub-
set of Scheme [57] and the Scheme 48 byte code implementa-
tion of Scheme [31]. Our PGG has several design properties
which make it especially suitable for our goals. None of
these properties were designed with object-code generation
in mind—they arise naturally from other requirements.

For our presentation, we use an abstract syntax for “Core
Scheme” (CS) [19] shown in Fig. 1. We have omitted top-
level definitions for brevity’s sake.

During work on a partial evaluator for an ML-style lan-
guage that performs side effects at specialization time [15],
Dussart, Lawall, and the second author discovered that a
specializer must output code in a restricted subset of Scheme
that explicitly serializes computations to ensure correctness—
essentially A-normal form [19] (ANF) as shown in Fig. 2.
Thus, ANF is the natural target language of the PGG.

Figure 3 shows such a specializer restricted to Core Scheme.
In the definition of the specializer, we employ ACS (“Anno-
tated Core Scheme”). ACS has additional variants of primi-
tive operations, let expressions, lambda abstractions, appli-
cations, and conditionals (annotated with superscript D, for
dynamic) that generate code. Additionally, there is a lift
construct that coerces first-order values to code. Underlin-
ing indicates code generation. The superscript 3 produces
fresh variables. Multiple occurrences of, say, x3 denote the
same variable.

The specializer employs continuation-based partial eval-
uation [2,6,37] to generate code in ANF. Whenever a piece
of code denoting a “serious” computation (a non-value) is
constructed, it is wrapped in a let expression with a fresh
variable which is used in place of the piece of code. This
happens in the rules for primitive operations and applica-
tions. The let wrapping is not necessary for values (con-
stants, variables, and abstractions).

The specializer performs some other transformations that
are necessary in a compiler. It desugars input programs to
Core Scheme, performs lambda lifting [28] and assignment
elimination. We do not show the parts of the specializer
that deal with memoization, since they are standard [29,58]
and not relevant to the present work.

Our compiler makes essential use of the transformations
already done by the specializer. It is a straightforward
recursive-descent compiler which passes around source ex-
pressions, a compile-time environment mapping names to
stack and environment locations, and a stack depth neces-
sary to correctly generate code for the Scheme 48 virtual
machine.



SJcKρ = λk.kc
SJxKρ = λk.k(ρJxK)
SJ(O E1 . . . En)Kρ = λk.SJE1Kρ(λy1. . . .SJEnKρ(λyn.k(JOKy1 . . . yn)))
SJ(λx1 . . . xn.E)Kρ = λk.(λy1 . . . yn.SJEKρ[xi/yi])
SJ(@ E0 E1 . . . En)Kρ = λk.SJE0Kρ(λf.SJE1Kρ(λy1. . . .SJEnKρ(λyn.fy1 . . . ynk))
SJ(let (x E1) E2)Kρ = λk.SJE1Kρ(λy.SJE2Kρ[x/y]k)
SJ(if0 E1 E2 E3)Kρ = λk.SJE1Kρ(λy.(if0 y (SJE2Kρk) (SJE3Kρk)))

SJ(lift E)Kρ = λk.SJEKρ(λy.k(y))

SJ(OD E1 . . . En)Kρ = λk.SJE1Kρ(λy1. . . .SJEnKρ(λyn.(let (x3 (O y1 . . . yn)) kx3)))
SJ(λDx1 . . . xn.E)Kρ = λk.k((λx3

1 . . . x
3
n .SJEKρ[x3

i /xi](λy.y)))
SJ(@D E0 E1 . . . En)Kρ = λk.SJE0Kρ(λy.SJE1Kρ(λy1. . . .SJEnKρ(λyn.(let (x3 (@ y y1 . . . yn)) kx3)))
SJ(letD (x E1) E2)Kρ = λk.SJE1Kρ(λy.SJE2Kρ[y/x]k)
SJ(if0D E1 E2 E3)Kρ = λk.SJE1Kρ(λy1.(if0 y1 (SJE2Kρk) (SJE3Kρk)))

Figure 3: Specializer which generates ANF output code

5 Automatic Composition

For the theoretical basis of our work, we draw from ideas
from numerous disciplines: Algebraic syntax representation,
compositional compilers, and deforestation are the key ideas
crucial to composing a specializer with a compiler. More-
over, ANF serves as a convenient means of communication
between the specializer and the compiler.

5.1 Syntax

For our purposes we regard standard syntax and annotated
syntax as algebraic datatypes. Therefore, both can be de-
fined as least fixpoints of functions over sets of expressions.
The functions are derived from the grammar of CS (with
+ denoting disjoint union, × denoting cartesian product of
sets, and List(X) denoting the set of finite lists over X).
Figure 4 shows the definition. We use the symbolic tags

Syntax = MkSyntax(Syntax)

where

MkSyntax(X)
= const Constants constants
+ var Variables identifiers
+ lam (List(Variables)×X) lambda abstractions
+ let (Variables×X ×X) let expressions
+ if (X ×X ×X) conditionals
+ app (X × List(X)) applications
+ prim (Primitives× List(X)) primitive operations

Figure 4: Algebraic Definition of Syntax

const, var, lam, if, app, and prim as indicators in which
summand of the disjoint union a value in MkSyntax(X) lies.
This allows us to use pattern matching as syntactic sugar in
defining functions on MkSyntax(X).

Given MkSyntax, we can convert every function f : Y →
Z to a function MkSyntax(f) : MkSyntax(Y )→ MkSyntax(Z)

by

MkSyntax(f)(const c) = const c
MkSyntax(f)(var (x)) = var (x)
MkSyntax(f)(lam (x1 . . . xn, y)) = lam (x1 . . . xn, fy)
MkSyntax(f)(let (x, y1, y2)) = let (x, fy1, fy2)
MkSyntax(f)(if (y1, y2, y3)) = if (fy1, fy2, fy3)
MkSyntax(f)(app (y, y1 . . . yn)) = app (fy, fy1 . . . fyn)
MkSyntax(f)(prim (O, y1 . . . yn)) = prim (O, fy1 . . . fyn)

Analogously, we define

AnnSyntax = MkAnnSyntax(AnnSyntax),

the function MkAnnSyntax, and its action on functions f :
Y → Z. The additional tags are lift, dlam, dif, dapp, and
dprim.

Technically, MkSyntax and MkAnnSyntax are functors over
Set.

5.2 Compositionality

One of the fundamental ideas of denotational semantics [51]
is the description of the meaning of a programming language
phrase by a compositional recursive definition: The meaning
of an expression is a function of the meanings of its subex-
pressions.

For the language CS we can therefore describe the se-
mantics of CS by defining suitable domains and functions
ev-const, ev-var, ev-lam, ev-let, ev-if, ev-app, and ev-prim.
(A denotational implementation to follow Espinosa’s termi-
nology [18, p. 11].) They are parameters to a generic recur-
sion schema that traverses CS expressions (see Fig. 5) where
we write ev for the tuple (ev-const, . . . , ev-prim). This recur-
sion schema is a catamorphism for Syntax [43].

Apart from compositional semantics, catamorphisms are
also useful for describing compilers and specializers [57]. For
a compiler, the functions evC are compilation functions for
each single construct. For a specializer, the functions evS
are specialization functions. In this case we have to use an
extended schema cataACS(evS)( ) which has additional pa-
rameters and cases for the annotated versions of the syntax
constructors. For example the specialization function for
(if0D M1 M2 M3) is

ev-difS(z1, z2, z3) = λρ.λk.z1ρ(λy1.(if0 y1 (z2ρk) (z3ρk))).

It is obtained from the explicit recursive definition in Fig. 3
by systematic transformation.



cataCS(ev)(M) = case M of
c ⇒ ev-const(c)
v ⇒ ev-var(v)
(λx1 . . . xn.M) ⇒ ev-lam(x1 . . . xn, cataCS(ev)(M))
(let (x M1) M2) ⇒ ev-let(x, cataCS(ev)(M1), cataCS(ev)(M2))
(if0 M1 M2 M3) ⇒ ev-if(cataCS(ev)(M1), cataCS(ev)(M2), cataCS(ev)(M3))
(@ M M1 . . .Mn) ⇒ ev-app(cataCS(ev)(M), cataCS(ev)(M1) . . . cataCS(ev)(Mn))
(O M1 . . .Mn) ⇒ ev-prim(O, cataCS(ev)(M1) . . . cataCS(ev)(Mn))

Figure 5: Generic recursion schema for CS

5.3 From Recursive Definition to Implicit Recursion

The transformation of recursive definitions into definitions
using catamorphisms is non-trivial in general [36]. In our
specific case, standard techniques from partial evaluation
[29] suffice to transform the explicit recursive definition of
the compiler into the specialized compilation functions evC .
Our aim is to generate evC automatically from the given
recursive definition by specializing it with respect to the
different syntactic constructs. Two things have to be done:

1. The syntactic dispatch has to be performed at special-
ization time.

2. The recursive calls to the (explicitly recursive) compi-
lation function on the syntactic subcomponents of the
construct have to be removed (replaced by the iden-
tity).

For the removal of recursive calls, the definition of cataCS(ev)( )
already takes care of the recursion. Hence all syntactic sub-
components have already been compiled when evC is ap-
plied. For the specialization combinators evS , such a trans-
formation has been carried out and proved correct by the
second author [57].

From now on we assume that the compiler is given in the
form cataCS(evC)( ) and the specializer in the form cataACS(evS)( ).
The types of these functions are interesting and important
for us.

evC : MkSyntax(Code)→ Code
cataCS(evC)( ) : Syntax→ Code
evS : MkAnnSyntax(Syntax)→ Syntax
cataACS(evS)( ) : AnnSyntax→ Syntax

5.4 Deforestation

Deforestation is a program transformation for functional
programs that removes intermediate data structures by sym-
bolic composition [62]. Suppose a function g produces some
intermediate data structures that is immediately consumed
by function f in f(g(x)). Deforestation (if applicable) re-
sults in a function h such that ∀x.h(x) = f(g(x)) where the
computation of h does not involve the construction of in-
termediate data. Deforestation can also be expressed in a
calculational form where it amounts to the application of a
so-called fusion or promotion theorem [41, 43]. Specialized
to our situation, the fusion theorem states the following:

∀X.∀y. cataCS(evC)(ev-XS(y))
= ev-XC◦S(MkAnnSyntax(cataCS(evC)( ))(y))

⇒
∀M. cataCS(evC)(cataACS(evS)(M))

= cataACS(evC◦S)(M)

Here, X ranges over the syntax constructor tags of anno-
tated expressions and y is an argument vector for X, but
with all arguments of type AnnSyntax replaced by arguments
of type Syntax, i.e., X(y) : MkAnnSyntax(Syntax). That is,
on the left side of the premise the specializer has recursively
specialized AnnSyntax to Syntax and is now about to spe-
cialize the next constructor of AnnSyntax. Now, ev-XS(y) :
MkSyntax(Syntax) performs this specialization step and we
can apply cataCS(evC)( ) = λz.cataCS(evC)(z) to it to com-
pile it to Code.

On the right side of the premise we use ev-XC◦S , a func-
tion that specializes and compiles the annotated construct
X. Here, we first compile the components of y of type Syn-
tax to obtain a value of type MkAnnSyntax(Code). This is a
suitable argument for ev-XC◦S since

evC◦S : MkAnnSyntax(Code)→ Code
cataACS(evC◦S)( ) : AnnSyntax→ Code

The remaining M in the conclusion ranges over AnnSyntax.
Now the task is: Given evS and evC find evC◦S such that

the premise of the fusion theorem holds. In this way we can
derive that, for example,

ev-difC◦S(z1, z2, z3) = λρ.λk.z1ρ(λy1.ev-ifC(y1, z2ρk, z3ρk)).

Now we know what we have to do to obtain evC◦S : we
only have to replace the syntax constructor X in the defini-
tion of evS by the respective call to function ev-XC from evC .
In practice, we parameterize evS over the (standard) syn-
tax constructors and provide alternative implementations
for them: one that constructs syntax and another one that
corresponds to evC .

6 Implementation

The theory presented in the previous section translates into
practice smoothly. This section describes the concrete im-
plementation of the compiler and its fusion with the PGG
in the context of the Scheme 48 system.

6.1 Step 1: Write a Compiler

In principle, it is possible to simply use the stock Scheme 48
byte-code compiler which passes a compile-time continua-
tion to identify tail-calls. However, the target code of the
specialization engine is in ANF. ANF, as shown in Fig. 2,
already makes control flow explicit. Only those function ap-
plications wrapped in a let are non-tail calls; all others are
jumps. Hence, the propagation of a compile-time continu-
ation is unnecessary, and it is sensible to make do with a
drastically cut-down version of the compiler. Removing the
compile-time continuation simplifies the compiler, and also



speeds up later code generation, as it could not be removed
by fusion.

The compiler is integrated with the Scheme 48 system.
In particular, it uses its native syntax representation and dis-
patch mechanism. The output of the compiler is an abstract
representation of the byte code for the Scheme 48 virtual
machine, essentially a stack machine with direct support for
closures and continuations [31].

Here is the compilator for if:

(define-compilator ’if syntax-type
(lambda (node cenv depth)
(let ((exp (node-form node))

(alt-label (make-label)))
(sequentially
;; Test
(compile-trivial (cadr exp) cenv)
(instruction-using-label

(enum op jump-if-false)
alt-label)

;; Consequent
(compile (caddr exp) cenv depth)
;; Alternative
(attach-label

alt-label
(compile (cadddr exp) cenv depth))))))

The compilator takes three parameters:

node a node of a syntax tree representing a conditional,

cenv a compile-time environment, and

depth the current depth of the stack.

Compile and compile-trivial compile the subexpressions
of the conditional.

A compilator constructs object code by using a number
of constructors: Sequentially arranges byte-code instruc-
tions in sequence; make-label, instruction-using-label,
and attach-label serve to create the jump code typical for
compiling conditionals. These constructors return an ab-
stract representation of object code. Scheme 48 internally
relocates the representation, resolves labels, and generates
the actual byte code. The relocation step is inherent in
the Scheme 48 architecture; an alternative implementation
would generate the object code directly, using backpatching
for resolving labels.

The compiler utilizes the define-compilator procedure
to create an entry in a syntax dispatch table compilators. It
uses the native syntax dispatch mechanism of the Scheme 48
compiler:

(define (define-compilator name type proc)
(operator-define! compilators name type proc))

Compilators is then used by a procedure compile which is
the top-level dispatcher of the compiler.

(define (compile exp cenv depth)
(let ((node (classify exp cenv)))
((operator-table-ref compilators

(node-operator-id node))
node cenv depth)))

Compile compiles serious expressions. An analogous mech-
anism creates the compile-trivial procedure.

6.2 Step 2: Annotate the Compiler

The annotation of the compiler functions is a straightfor-
ward process that requires no deep understanding of the
code. The compilation combinators have to perform the
syntactic dispatch at generation time (of the combinators)
and copy the remaining code verbatim. The annotated com-
pilator for if is as follows:

(define-compilator ’if syntax-type
(lambda (node cenv depth)

(let ((exp (node-form node)))
( let ((alt-label ( make-label)))

( sequentially
;; Test
(compile-trivial (cadr exp) cenv)
( instruction-using-label

( lift-literal
(enum op jump-if-false))

alt-label)
;; Consequent
(compile (caddr exp) cenv depth)
;; Alternative
( attach-label alt-label

(compile (cadddr exp) cenv depth)))))))

In an annotated program all constructs starting with an
underline _ perform code generation. The remaining parts
are executed at generation time.

Of the parameters to the compilator, only the structure
of node is known at generation time. The subexpressions
of node as well as cenv and depth are unknown. A correct
annotation prescribes code generation for every value that
depends on an unknown value.

The underlined constructs have the following meaning:

• _let generates a let expression;

• _ generates a procedure call, for example, (_ make-label)
generates a call to procedure make-label;

• _lift-literal turns a generation-time constant into
code.

Conceivably, even this annotation could have been per-
formed automatically by an appropriate binding-time anal-
ysis, possibly at the expense of changing the representation
of abstract syntax in the compiler.

6.3 Step 3: Implement the Annotations

Since the annotated compiler needs to serve both as a stand-
alone compiler and as a generator for the code generation
combinators, there are two different “implementations” of
the annotations.

6.3.1 Annotations for the Compiler

For the compiler, the annotations need to “disappear” again.
Scheme macros [49] do the job:

(define-syntax _
(syntax-rules ()

((_ arg ...)
(arg ...))))

(define-syntax _let
(syntax-rules ()

((_let stuff ...)



(let stuff ...))))

(define-syntax _lift-literal
(syntax-rules ()
((_lift-literal z)
z)))

6.3.2 Code Generation Combinators

Producing code generation combinators from the compiler
is also straightforward. The idea is to create alternative ver-
sions of the annotation macros that produce Scheme source
expressions for the combinators, to print these into a file,
and load them when needed.

The macro _ constructs a function call by taking the
name fct of the function literally and processing the argu-
ments recursively.

(define-syntax _
(syntax-rules ()

((_ fct arg ...)
‘(fct ,arg ...))))

The _let macro constructs a let expression from the vari-
able name v and the processed header e. The body is con-
structed in an environment where v is bound to the symbol
v. This binding is produced by a generation-time let ex-
pression.

(define-syntax _let
(syntax-rules ()

((_let ((v e)) body)
‘(LET ((v ,e))

,(let ((v ’v)) body)))))

In general, such a macro cannot reuse the variable name v
but rather needs to generate fresh names [57]. This is not
necessary in our implementation.

The _lift-literal macro (for numbers, etc) is merely
present for conceptual reasons as numbers, for instance, are
self-quoting in Scheme. To generate code for constants like
lists, another macro _lift-quote inserts the proper quoting.

(define-syntax lift-literal
(syntax-rules ()

(( lift-literal z) z)))

The calls to compile and compile-trivial are discarded as
explained in Sec. 5.4.

(define-syntax compile
(syntax-rules ()

((compile arg ...)
‘(,arg ...))))

Finally, an alternative implementation of define-compilator
generates procedure definitions for output code construc-
tors. The generating extensions produced by the PGG call
the procedures to generate residual code.

(define-syntax define-compilator
(syntax-rules

(quote if call
let-trivial let-serious
begin)

((define-compilator ’if ncd-fun)
‘(define (make-residual-if test then alt)

,(construct-serious-body
ncd-fun

(make-node (get-operator ’if)
’(IF TEST THEN ALT)))))

((define-compilator ’call ncd-fun)
‘(define (make-residual-call f . args)

,(construct-serious-body
ncd-fun
(make-node (get-operator ’call)

’(F . ARGS)))))
;; ...

))

(define (construct-serious-body ncd-fun node)
‘(lambda (cenv depth)

,(ncd-fun node ’cenv ’depth)))

Each of the compilators calls construct-serious-body. It
accepts a function of three arguments, a known node, un-
known cenv, and depth as described above. The other ar-
gument node is statically constructed in the respective part
of the define-compilator macro.

The make-residual-... functions generated by the above
process serve as direct replacements of the syntax construc-
tion functions (if0 ), (@ ), etc, in the specializer.

6.4 Step 4: Test and Debug

There were no problems in putting the system together.
During the integration we discovered bugs mostly in the
specializer and in the compiler which were independent of
the conceptual issues.

The only problem to be resolved has to do with the du-
ality between variable names and their compilators:

During ordinary specialization there are two kinds of ob-
jects: static values and pieces of code. Naive application
of our approach replaces the pieces of code by compilation
functions. However, the compilator for lambda abstractions
requires a list of the names of its free variables; references to
them are compiled differently from regular variables for the
Scheme 48 VM. Therefore, our systems passes the names
of variables by default and converts them to compilation
functions when necessary.

7 Benchmarks

Our experiments largely confirm the expectations to RTCG
technology, but also point to some possible improvements to
our implementation.

For our benchmarks, we used two standard examples
for compilation by partial evaluation: an interpreter for a
small first-order functional language called Mixwell, and
one for a small lazy functional language called Lazy, both
taken from the Similix distribution [3]. The Mixwell in-
terpreter is 93 lines long and was run on a 620-line input
program, the Lazy interpreter has 127 lines of code and
was run on a 26-line input program. We used Scheme 48
0.46 on a Pentium/90 laptop with 24 Megabytes of RAM
running FreeBSD 2.1.5. All timings are cumulative over a
large number of runs, and are in seconds.

source code object code
Mixwell 3.072 3.770
Lazy 1.832 3.451

Figure 6: Generation speed



Figure 6 shows timings for generating both Scheme source
and object code directly for compilers generated from the in-
terpreters, in both cases on medium-sized input programs.
Object code generation is up to a factor of 2 slower than
generating source, since Scheme 48 uses a higher-order rep-
resentation for the object code that still needs to be con-
verted to actual byte codes—that conversion is also part of
the timings. Hence, a future step would be emitting byte
code directly or using a more efficient intermediate repre-
sentation.

Mixwell 7.180
Lazy 4.746

Figure 7: Compilation times for the specialization output

Still, loading the generated source code back into the
Scheme system is by far more expensive than direct object
code generation, as in Fig. 7. Here, we used our own ANF
compiler, not the (slower) stock Scheme 48 compiler. To
fully appreciate the timing data, note that in order to pro-
duce object code for a specialized program from an ordinary
specializer, we have to add the timings for source code gen-
eration in Fig. 6 and the compilation times in Fig. 7.

BTA Load Generate Compile
Mixwell 2.730 4.026 0.652 0.964
Lazy 2.253 3.217 0.568 0.604

Figure 8: Using RTCG for normal compilation

One of our future objectives is to create a Scheme sys-
tem where the stock compiler works through run-time code
generation. For “normal” compilation, the system takes all
inputs to a program as dynamic. Figure 8 shows timings for
preliminary experiments in that direction: The “BTA” col-
umn shows the time needed for binding-time analysis and
creation of the object code generator, “Load” is the time
needed for loading (and compiling) the object code genera-
tor, and “Generate” the time for running it. “Compile” is
the time needed to load and compile the original interpreter
using the stock Scheme 48 compiler.

8 Related Work

8.1 A-Normal Form

Compilation with ANF [19] captures the essence of continuation-
based compilation [1,30,33,55]. We build upon that work to
construct the simple ANF compiler. Using ANF (or monadic
normal form) for compilation is also put forward by Hatcliff
and Danvy [24] and by Sabry and Wadler [50].

Danvy’s work [10,11,13] uses type-directed partial evalu-
ation for semantics-directed compilation. His system wraps
let expressions around code that denotes computations in
order to avoid code duplication. As a result, he also ob-
tains programs in ANF. The type-directed partial evaluator
is also a suitable candidate for composition with a compiler
in the same way as shown in this work.

Partial evaluation [7,29] is an automatic program trans-
formation that specializes programs with respect to parts
of the input which are known in advance. Continuation-
based partial evaluation [2, 37] is the enabling technology
that makes our specializer suited to generate code in ANF.

The partial evaluator that we use is the ANF version of Con-
sel and Danvy’s [6] initial approach to improve the results
of partial evaluation by CPS transformation. The original
application of our specializer is specialization of ML-style
programs which can perform operations on references at spe-
cialization time [59].

8.2 Partial Evaluation

Holst [26] describes a system called AMIX, a partial evalu-
ator that generates code for a stack machine directly. The
motivation behind this system is similar to ours, with two
notable differences: The AMIX system was written from
scratch with the generation of stack code in mind and it
is offline in the sense that it produced stack code in some
representation that had to be fed to a separate interpreter.
In contrast, our system results from the systematic compo-
sition of existing parts and it produces code for immediate
execution by the run-time system.

Annotation functions similar to the ones shown in Sec. 2.3
are considered in work on writing PGG’s by hand [22, 57].
Deforestation is well-known and well-investigated in the func-
tional programming community because it is a powerful tool
for program optimization [4,5,21,23,36,44,45,52–54,56,62].

Symbolic composition is an important technique in the
CERES compiler generator system [60]. One of the key
steps in CERES is the composition of a language definition
considered as a compiler with a fixed compiler to a low-level
language. However, the technical details of this composi-
tion are not spelled out. Also, in CERES, the result of the
composition is the entire compiler, whereas our composition
generates bricks from which the generated compiler will be
built. Another application of composition in CERES is the
creation of parts of the system itself.

8.3 Run-Time Code Generation

Run-time code generation has received revived interest since
the early 90’s when techniques became available to perform
RTCG cheaply. Previously, RTCG happened mainly in the
context of reflective language systems, notably Lisp, and
usually involved prohibitive interpretive overhead or compi-
lation time. Since then, it has been applied to code optimiza-
tion [32], efficient dynamic implementation of programming
languages [25], optimization of bitmap graphics [14,47], op-
erating system optimization [42] and other tasks specifically
suited to RTCG [8,9, 38, 39]. These present only selections;
a complete overview of the field would exceed the scope of
this paper.

Of particular interest is the work relating RTCG to par-
tial evaluation. The Fabius system of Lee and Leone [38,39]
performs RTCG of native code for ML. Fabius comes with
its own application specific code generator, whereas we have
reused the Scheme 48 code generation machinery. Both
systems compile annotated source code to yield a program
that generates code at run-time. The systems differ in the
way they generate code. Fabius produces object code at
run-time and performs various standard optimizations at
compile-time and at run-time. For example, it resolves the
issue of register allocation for run-time generated code at
compile-time whereas it addresses instruction selection at
run-time. Our system abstracts from all these issues since
the emphasis is on the composition itself. Our approach is
complementary in that it could benefit from Fabius’s tech-
niques to improve the efficiency and quality of code genera-
tion.



Consel’s group has implemented the Tempo system for
C [8, 9] which generates code templates which are copied
and instantiated at run time. Their system interacts with
the GNU C compiler, but requires low-level modifications
in the code generator to support templates. Draves [14]
has applied partial evaluation to low-level code, and imple-
mented a PGG for an intermediate representation to obtain
efficient code for computer graphics. His system operates
purely on the intermediate code; only rudimentary support
for higher-level programming is provided.

9 Assessment and Future Work

Unfortunately, researchers have applied the term “run-time
code generation” to a variety of different situations. There
is no clear cut border between ordinary compilation and
RTCG. On the “ordinary” end of the spectrum, compila-
tion is offline as in traditional compilers. On the other end
of the spectrum, there are online systems like DCG [17] or
the Synthesis kernel [42] that compile code for immediate
execution. The rest of the spectrum is not empty: pro-
gramming languages like ML, Scheme, or Smalltalk have a
read-eval-print loop that accepts function definitions that
are compiled and the code is immediately available for exe-
cution. Hence, they are essentially online compilers. Obvi-
ously, the trade-offs involved at each point of the spectrum
are different.

Typical situations for RTCG seem to be the interleav-
ing of compilation with execution of the compiled code, the
generation of object code without explicitly running a com-
piler, and combinations of those two. Recent applications
have focused on using RTCG for on-the-fly code optimiza-
tions in high-performance systems by staging computations
at run time. For this to be effective, it is clearly necessary to
deal with native code generation and the problem that this
incurs, such as register allocation and various optimization
techniques.

As our work focuses on the high-level aspects of gaining
an RTCG system, the issues we address are largely orthog-
onal to recent work in the RTCG field. Instead, they are
a direct continuation of previous work in the partial evalu-
ation community. In some sense we are aiming to provide
the missing link to systems like Fabius. As such, our imple-
mentation is geared more towards applications well-known
in partial evalution which benefit from RTCG rather than
the other way around. Clearly, work remains to apply our
approach to realistic RTCG systems which generate native
code. The applicability of partial evaluation methodology
as a framework for on-the-fly code generation has already
been demonstrated [8,9, 39].

Hence, the following issues need to be addressed:

• Our method needs to be applied to a compiler gen-
erating native code. A first step in our present sys-
tem would be circumventing the intermediate repre-
sentation which would speed up code generation sig-
nificantly.

• Typical current RTCG applications must be reformu-
lated in the context of incremental specialization [58].
The performance of those systems needs to be com-
pared to hand-written ones.

• As mentioned in Sec. 7, the major obstacle to replac-
ing the a stock compiler by an RTCG system is that
the code generators still have to be loaded–and thus

compiled by the stock compiler—before they can be
executed. The obvious way to speed up that process
is to apply the system to itself, and generate the gen-
erating extensions as object code themselves.

10 Conclusion

We have demonstrated that modern program transforma-
tion techniques like deforestation and partial evaluation are
powerful tools in the hands of the programmer. We have
successfully composed a partial evaluator with a compiler
without rewriting everything from scratch. Instead we have
reused code from the compiler and from the specializer and
have generated the glue code automatically (by partial eval-
uation) from an annotated version of the original compiler.
Our work is an attempt to bridge the gap between partial
evaluation and run-time code generation methodologies.
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