
Down with Emacs Lisp:
Dynamic Scope Analysis

Matthias Neubauer
Institut für Informatik
Universität Freiburg

neubauer@informatik.uni-freiburg.de

Michael Sperber
Wilhelm-Schickard-Institut für Informatik

Universität Tübingen
sperber@informatik.uni-tuebingen.de

ABSTRACT
It is possible to translate code written in Emacs Lisp or an-
other Lisp dialect which uses dynamic scoping to a more
modern programming language with lexical scoping while
largely preserving structure and readability of the code. The
biggest obstacle to such an idiomatic translation from Emacs
Lisp is the translation of dynamic binding into suitable in-
stances of lexical binding: Many binding constructs in real
programs in fact exhibit identical behavior under both dy-
namic and lexical binding. An idiomatic translation needs to
detect as many of these binding constructs as possible and
convert them into lexical binding constructs in the target
language to achieve readability and efficiency of the target
code.

The basic prerequisite for such an idiomatic translation
is thus a dynamic scope analysis which associates variable
occurrences with binding constructs. We present such an
analysis. It is an application of the Nielson/Nielson frame-
work for flow analysis to a semantics for dynamic binding
akin to Moreau’s. Its implementation handles a substantial
portion of Emacs Lisp, has been applied to realistic Emacs
Lisp code, and is highly accurate and reasonably efficient in
practice.

1. MIGRATING EMACS LISP
Emacs Lisp [16, 29] is a popular programming language

for a considerable number of desktop applications which run
within the Emacs editor or one of its variants. The actively
maintained code base measures at around 1,000,000 loc1.
As the Emacs Lisp code base is growing, the language is
showing its age: It lacks important concepts from modern
functional programming practice as well as provisions for
large-scale modularity. Its implementations are slow com-
pared to mainstream implementations of other Lisp dialects.
Moreover, the development of both Emacs dialects places

1The XEmacs package collection which includes many pop-
ular add-ons and applications currently contains more than
700,000 loc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICFP’01, September 3-5, 2001, Florence, Italy.
Copyright 2001 ACM 1-58113-415-0/01/0009 ...$5.00.

comparatively little focus on significant improvements of the
Emacs Lisp interpreter.

On the other hand, recent years have seen the advent
of a large number of extension language implementations
of full programming languages suitable for the inclusion in
application software. Specifically, several current Scheme
implementations are technologically much better suited as
an extension language for Emacs than Emacs Lisp itself.
In fact, the official long-range plan for GNU Emacs is to
replace the Emacs Lisp substrate with Guile, also a Scheme
implementation [28]. The work presented here is part of a
different, independent effort to do the same for XEmacs, a
variant of GNU Emacs which also uses Emacs Lisp as its
extension language.

Replacing such a central part of an application like XEmacs
presents difficult pragmatic problems: It is not feasible to re-
implement the entire Emacs Lisp code base by hand. Thus,
a successful migration requires at least the following ingre-
dients:

• Emacs Lisp code must continue to run unchanged for
a transitory period.

• An automatic tool translates Emacs Lisp code into the
language of the new substrate, and it must produce
maintainable code.

Whereas the first of these ingredients is not particularly hard
to implement (either by keeping the old Emacs Lisp imple-
mentation around or by re-implementing an Emacs Lisp en-
gine in the new substrate), the second is more difficult. Even
though a direct one-to-one translation of Emacs Lisp into
a modern latently-typed functional language is straightfor-
ward by using dynamic assignment or dynamic-environment
passing to implement dynamic scoping, it does not result in
maintainable output code: Users of modern functional lan-
guages use dynamic binding only in very limited contexts
such as exception handling or parameterization. As it turns
out, the situation is not much different for Emacs Lisp users:
For many lets and other binding constructs in real Emacs
Lisp code, dynamic scope and lexical scope are identical !
Consequently, a good “idiomatic” translation of Emacs Lisp
into, say, Scheme, should convert these binding constructs
into the corresponding lexical binding constructs of the tar-
get substrate.

The only problem is to recognize these binding constructs,
or rather, distinguish those where the programmer “meant”
dynamic scope from those where she “meant” lexical scope.
Since with dynamic scope, bindings travel through the pro-
gram execution much as values do, this requires a proper

(let* ((filename (expand-file-name filename))

(file (file-name-nondirectory filename))

(dir (file-name-directory filename))

(comp (file-name-all-completions file dir))

newest)

(while comp

(setq file (concat dir (car comp))

comp (cdr comp))

(if (and (backup-file-name-p file)

(or (null newest)

(file-newer-than-file-p file newest)))

(setq newest file)))

newest))

Figure 1: Typical usage of let in Emacs Lisp.

flow analysis. This paper presents such an analysis called
dynamic scope analysis.

Specifically, our contributions are the following:

• We have formulated a semantics for a subset of Emacs
Lisp, called Mini Emacs Lisp, similar to the sequential
evaluation function for Λd by Moreau [20].

• We have applied the flow analysis framework of Niel-
son and Nielson [22] to the semantics, resulting in an
acceptability relation for flow analyses of Mini Emacs
Lisp programs.

• We have used the acceptability relation to formulate
and implement a flow analysis for Emacs Lisp which
tracks the flow of bindings in addition to the flow of
values.

• We have applied the analysis to real Emacs Lisp code.
More specifically, the analysis is able to handle medium-
sized real-world examples with high accuracy and rea-
sonable efficiency.

The work presented here is a part of the el2scm project that
works on the migration from Emacs Lisp to Scheme. How-
ever, the other aspects of the translation (such as front-end
issues, correct handling of symbols, the code-data duality,
treatment of primitives and so on) are outside the (lexical)
scope of this paper. Indeed, the analysis could be used for a
number of other purposes, among them the development of
an efficient compiler for Emacs Lisp, or the translation to a
different substrate such as Common Lisp.

Overview.The next section presents some code examples
which show the need for a dynamic scope analysis. Sec-
tion 3 defines the syntax of Mini Emacs Lisp. Section 4
develops an operational semantics with evaluation contexts.
Based on the semantics, Section 5 presents a specification
of a correct flow analysis. The next section sketches a cor-
rectness proof. Our implementation approach is described
in Section 7. Section 8 describes some experimental results
gained with our implementation prototype. We end with a
discussion of related work and a conclusion.

2. EXAMPLES
Consider the Emacs Lisp code shown in Figure 1, taken

literally from files.el in the current XEmacs core. It

(let ((file-name-handler-alist nil)

(format-alist nil)

(after-insert-file-functions nil)

(coding-system-for-read ’binary)

(coding-system-for-write ’binary)

(find-buffer-file-type-function

(if (fboundp ’find-buffer-file-type)

(symbol-function ’find-buffer-file-type)

nil)))

(unwind-protect

(progn

(fset ’find-buffer-file-type

(lambda (filename) t))

(insert-file-contents

filename visit start end replace))

(if find-buffer-file-type-function

(fset ’find-buffer-file-type

find-buffer-file-type-function)

(fmakunbound ’find-buffer-file-type))))

Figure 2: Parameterizations via dynamic let in
Emacs Lisp.

contains five variable bindings, all introducing temporary
names for intermediate values. The bindings of the vari-
ables filename, file, dir, comp, and newest are all visible
in the other functions reachable from the body of the let,
yet none of them contain occurrences of these names. The
only variable occurrences which access the bindings are in
the body of the let* itself, and all are within the lexical
scope of the bindings. Hence, translating the let* into a
lexically-scoped counterpart in the target language would
preserve the behavior of this function.

Figure 2 shows an example for idiomatic use of dynamic
binding (also taken from files.el): It is part of the im-
plementation of insert-file-contents-literally which
calls insert-file-contents in the body of the let. The
definition of insert-file-contents indeed contains occur-
rences of the variables bound in the let with the exception
of find-buffer-file-type-function. Therefore, it is not
permissible to translate the let with a lexically-scoped bind-
ing construct.

For the vast majority of binding constructs in real Emacs
Lisp code, dynamic scope and lexical scope coincide. Thus,
the ultimate goal of the analysis is to detect as many of these
bindings constructs as possible.

In general however, value flow and the flow of bindings in-
teract during the evaluation of Emacs Lisp programs. Hence,
it is not possible to apply standard flow analyses based on
lexical-binding semantics to solve the problem; a new anal-
ysis is necessary.

3. SYNTAX OF MINI EMACS LISP
For the sake of simplicity, we concentrate on a subset

of Emacs Lisp called Mini Emacs Lisp in the paper. We
omit multi-parameter (and variable-parameter) functions,
catch/throw, dual name spaces for functions and “ordinary”
values, the resulting gratuitous split between funcall and
regular application as well as the data/code duality which
appears in various contexts in Emacs Lisp. Adding these
features to the analysis is straightforward and does not re-

quire significant new insights, which is why we omit it here.
Our implementation of the analysis does treat all of these
features.

Here is the syntax for Mini Emacs Lisp:

l ∈ Lab ::= . . .
s, x ∈ SymVar ::= fritz | franz | . . .
c ∈ Lit ::= 0 | 1 | 2 | . . .
b ∈ Prim ::= cons | car | . . .

t ∈ Term ::= c
| (quote s)
| (lambda (x) e)
| x
| (setq x e)
| (e0 e1)

| (let x e1 e2)

| (if e0 e1 e2)

| (b e1 . . . en)

e ∈ Exp ::= tl

d ∈ Def ::= (defvar x e)
| (defun x0 (x1) e)

p ∈ Prg ::= d∗ e

All expressions carry unique labels which the analysis uses
for identifying locations in the program source. The set of
literals is trivially extensible. Note that Emacs Lisp uses the
nil symbol for boolean false, and everything else for true.

An Emacs Lisp program consists of a sequence of defini-
tions followed by a single expression—the entry point of the
program.

4. A SEMANTICS FOR MINI EMACS LISP
We present a structural operational or small-step seman-

tics [23] for Mini Emacs Lisp. We use evaluation contexts
and syntactic rewriting as developed by Felleisen and Fried-
man [6].

4.1 Values and Intermediate Terms
We use separate syntactic categories for intermediate ex-

pressions and values. Here is the syntax for literals and
abstractions:

f ∈ Fun ::= (func (x) e)

v ∈ Val ::= (prim c)
| (sym s)
| f

| (pair vl11 vl22)

it ∈ ITerm ::= (bind x v e)

e ∈ Exp ::= vl | it l

The elements of Val, called values, are results from success-
ful computations. They represent primitive values, symbols
and functions, and correspond to the the expressions of Exp
which produce them.

The semantics uses intermediate bind terms to handle dy-
namic binding: They result from reducing let expressions
with the value to be bound to the variable already evaluated.
Expressions attach labels to values and intermediate terms.

Only the value bound to a variable by a bind term does not
carry a label because bind expressions only show up during
evaluation, but not in the analysis which only looks at the
source code.

4.2 Environments
Environments ρ are finite mapping from symbols to values

and contain bindings:

ρ ∈ Env = SymVar→fin Val.

The notation for the empty environment is []. The modifi-
cation of an existing environment through the new mapping
of a symbol x to a value v is written as ρ[x 7→ v].

4.3 Evaluation Contexts
Here are the evaluation contexts for Mini Emacs Lisp:

E ∈ EvalContext ::= [−]
| (E e2)

l

| (if E e1 e2)
l

| (let x E e2)
l

| (bind x v E)l
| (setq x E)l
| (p v∗ E e∗)l

Vx0 ∈ VarContext(x0) ::= [−]
| (E e2)

l

| (if Vx0 e1 e2)
l

| (let x Vx0 e2)
l

| (bind x1 v Vx0)
l

if x0 6= x1

| (setq x Vx0)
l

| (b v∗ Vx0 e∗)l

The rules for EvalContext describes all contexts in which
a reduction step in Mini Emacs Lisp can occur. Variable ac-
cess needs the most recent dynamic binding of the variable.
The variable contexts in VarContext(x0) help accomplish
this; they describe all contexts that do not contain any bind-
ings associated with the symbol x0.

4.4 Reductions
An evaluation state consists of a partially evaluated ex-

pression and a global environment. Thus, a configuration
γ of Conf is a tuple consisting of an environment and a
current expression:

γ ∈ Conf = Env ×Exp.

The primitive steps of the evaluation process are reduction
rules. Some expressions immediately reduce to a value:

[c] ρ, E [cl]→ ρ, E [(prim c)l]

[quote] ρ, E [(quote s)l]→ ρ, E [(sym s)l]

[lambda] ρ, E [(lambda (x) e)l]→ ρ, E [(func (x) e)l]

Note that in Emacs Lisp, abstractions do not evaluate to
closures—this is dynamic scope, after all.

Here are the semantic mechanics for dealing with variable

access:

[var] ρ, E [(bind x v Vx [xl])l0] →
ρ, E [(bind x v Vx [vl])l0]

[varglob] ρ,Vx [xl]→ ρ,Vx [vl] if x ∈ dom(ρ), ρ(x) = v

A variable may have either a local or a global binding. The
let and lambda constructs introduce local bindings. For a
variable occurrence, the closest bind context for that vari-
able holds its value. The [var] rule expresses this behavior;
the context Vx guarantees that there is no other binding
closer to the variable. Lacking a local binding, a global one
must apply; the [varglob] rule takes over.

The machinery for mutating bindings by setq is analogous
to the one for referencing variables:

[setq] ρ, E [(bind x v Vx [(setq x vl00)l])l1] →
ρ, E [(bind x v0 Vx [vl0])l1]

[setqglobal] ρ,Vx [(setq x vl00)l]→ ρ[x 7→ v0],Vx [vl0]

In the case of a local binding, the [setq] rule changes the
value in the corresponding bind context. Assignments to
global variables mutate the global environment.

Here are the reductions for function applications and local
variable bindings:

[app] ρ, E [((func (x1) e2)
l0 e1)

l]→ ρ, E [(let x1 e1 e2)
l]

[let] ρ, E [(let x vl11 e2)
l]→ ρ, E [(bind x v1 e2)

l]

[bind] ρ, E [(bind x v0 vl11)l]→ ρ, E [vl1]

The [app] rule reduces a function application to a binding of
the function parameter wrapped around the function body
and the environment.

The [let] rule of EvalContext turns a let expression into
a corresponding bind expression. Evaluation continues with
the body e2 until it becomes a value. Then, the [bind] rule
removes the obsolete context.

Note that the distinction between let expressions and
bind expressions is unnecessary when considering only the
semantics, but the formulation of the flow analysis requires
their separation.

The [if1] and [if2] rules handle conditionals:

[if1] ρ, E [(if vl0 tl11 e2)
l]→ ρ, E [tl1] if v 6= (sym nil)

[if2] ρ, E [(if vl0 e1 tl22)l]→ ρ, E [tl2] if v = (sym nil)

Here are reduction rules for selected primitives, namely those
dealing with pairs:

[cons] ρ, E [(cons vl11 vl22)l]→ ρ, E [(pair vl11 vl22)l]

[car] ρ, E [(car (pair vl11 vl22)l0)l]→ ρ, E [vl1]

[cdr] ρ, E [(cdr (pair vl11 vl22)l0)l]→ ρ, E [vl2]

The [cons] rule produces a pair value from two argument
values. Car selects the first component of pairs by rule [car],
the [cdr] rule handles cdr.

The combination of the reduction rules defines the reduc-
tion relation

→⊆ Conf ×Conf

putting all possible configurations before and after a reduc-
tion step during evaluation in relation. Its reflexive transi-
tive closure is written →?.

4.5 Expression Contexts
So far, only the meaning of expression is defined by the→

relation. For programs, we define another kind of context,
the expression contexts of ExpContext:

X ∈ ExpContext ::= (defvar x [−]) p
| [−]

4.6 Reductions for Programs
Equipped with the notion of program configurations

δ ∈ PConf = Env ×Prg,

as well as contexts for programs X and the reduction relation
→ for expressions, it is possible to state the rewriting rules
→d for programs:

[defvar] ρ, (defvar x vl00) p→d ρ[x 7→ v0], p

if x 6∈ dom(ρ)

[defun] ρ, (defun x0 (x1) e) p
→d ρ[x0 7→ (func (x1) e)], p

if x0 6∈ dom(ρ)

[exp]
ρ, e→ ρ′, e′

ρ,X [e]→d ρ
′,X [e′]

The [defvar] and [defun] rules satisfy top-level definitions.
The [defvar] rule inserts the new global binding in the vari-
able environment ρ. The condition x 6∈ dom(ρ) guarantees
that there is only one global variable for every name. The
[defun] rule does the equivalent for procedures. The [exp]
rule allows the use of all the reductions for expressions at
the places defined using the contexts ExpContext. Again
→d
∗ is the reflexive transitive closure of →d.

4.7 The Evaluation Function of Programs
The reduction relation →d rewrites the program until it

gets a final answer. This does not always happen: the pro-
gram may loop in which case the reduction sequence is in-
finite, or evaluation may get stuck at a configuration with
no matching reduction rule. Thus, the reduction relation
induces a partial evaluation function eval:

eval : Prg 99K Val

eval(p) =

{
v if [], p→d

∗ ρ, v for some ρ

undefined otherwise

5. SPECIFICATION OF THE ANALYSIS
This section specifies a flow analysis for Mini Emacs Lisp.

With the help of the definitions for the abstract domains
of the analysis we define an acceptability relation for correct
flow analyses which employ these domains. The actual anal-
ysis results directly from the definition of the acceptability
relation.

5.1 Abstract Domains
Here are the abstract domains of the analysis:

bp ∈ B̂P = Lab ∪ {�}
bpe ∈ B̂PEnv = SymVar→ B̂P

p̂ ∈ Ĉons = Lab× Lab× B̂PEnv

v̂ ∈ V̂al = P(SymVar ∪ {ω} ∪ Fun ∪ Ĉons)

ρ̂ ∈ Ênv = (SymVar× B̂P)→ V̂al

Ĉ ∈ Ĉache = (Lab× B̂PEnv)→ V̂al

Birthplaces—B̂P for short—denote syntactic locations of
variable bindings. The � stands for top-level bindings. The
label of the body of a function or of a let expression serves
as the birthplace for the binding it creates.

Birthplace environments B̂PEnv are abstractions over
regular variable environments; they map variables to birth-
places instead of regular values.

Ĉons is one part of the abstract value domain; it is the
set of all possible abstract pairs and contains all triples of
two labels and a birthplace environment. The two labels
are the labels of these two argument subexpressions of the
cons expression which created the pair. The birthplace en-
vironment registers the abstract bindings active at the time
of creation of the pair. Registering the birthplace environ-
ment is necessary because we differentiate program points
depending on the birthplace environments they occur under.

V̂al is the set of all possible abstract values v̂. An abstract
value represents a set of run-time values. Not every run-time
value is relevant to the analysis: the single symbol ω repre-
sents all primitive values except for symbols. The analysis
tracks symbols needed (eventually) for variable names, func-
tions, primitive values, and abstract pairs.

An abstract cache Ĉ of Ĉache is an abstract profile of
all values which occur during a program run. It tracks the
abstract values of program subexpressions, differentiated by
birthplace environment.

An abstract environment ρ̂ of Ênv is a union of the en-
vironments that occur during the evaluation of a program.
It associates a variable name and one of its birthplaces with
an abstract value.

5.2 Acceptability for Programs
We define an acceptability relation for programs |=:

|=⊆ Ĉache× Ênv × B̂PEnv ×Prg.

The |= relation defines the validity of analyses (Ĉ, ρ̂) with
regard to a program p and a current birthplace environment
bpe. From now on, the notation is

(Ĉ, ρ̂) |=bpe p.

5.2.1 Value Expressions

[c] (Ĉ, ρ̂) |=bpe c
l

iff ω ∈ Ĉ(l, bpe)

[quote] (Ĉ, ρ̂) |=bpe (quote s)l

iff s ∈ Ĉ(l, bpe)

[lam] (Ĉ, ρ̂) |=bpe (lambda (x) e0)
l

iff (func (x) e0) ∈ Ĉ(l, bpe)

The [c], [quote], and [lam] clauses register their abstract
counterpart in the abstract cache under the program point
l and the current birthplace environment bpe. Note that
[lam] does not require that the analysis is also valid for the
body of each lambda term, because an acceptable analysis
must only treat the reachable functions correctly.

5.2.2 Expressions
Occurrences of variable references and mutations induce

further validity constraints. The [var] rule for variable ref-
erences enforces that the abstract value for the variable x
and its current birthplace bpe(x), held in the abstract envi-
ronment, must be a subset of the abstract value that linked
it to its label and birthplace environment in the abstract
cache:

[var] (Ĉ, ρ̂) |=bpe x
l

iff ρ̂(x, bpe(x)) ⊆ Ĉ(l, bpe)

The [setq] clause enforces that the analysis for the right-
hand side is also valid. Moreover, a valid analysis allows
values that result from the subexpression t0 to be possible
values for the variable x under the current bindings bpe and
also for the whole expression:

[setq] (Ĉ, ρ̂) |=bpe (setq x tl00)l

iff (Ĉ, ρ̂) |=bpe t
l0
0 ∧

Ĉ(l0, bpe) ⊆ ρ̂(x, bpe(x))∧
Ĉ(l0, bpe) ⊆ Ĉ(l, bpe)

The [app] clause specifies the constraints for procedure

calls. Its first and second condition, (Ĉ, ρ̂) |=bpe tl00 and

(Ĉ, ρ̂) |=bpe t
l1
1 , guarantee that the analysis is also valid un-

der the same birthplace environment for the operator t0 and
the operand t1:

[app] (Ĉ, ρ̂) |=bpe (tl00 tl11)l

iff (Ĉ, ρ̂) |=bpe t
l0
0 ∧

(Ĉ, ρ̂) |=bpe t
l1
1 ∧

(∀(func (x1) t
lb
b) ∈ Ĉ(l0, bpe).

(Ĉ, ρ̂) |=bpe0 t
lb
b ∧

Ĉ(l1, bpe) ⊆ ρ̂(x1, lb)∧
Ĉ(lb, bpe0) ⊆ Ĉ(l, bpe)∧
where bpe0 = bpe[x1 7→ lb])

Every function (func (x1) t
lb
b) which might occur in the

operator position t0 of a procedure call under bpe must have
a valid analysis for its body as well, under an expanded
birthplace environment bpe0 which contains a binding for
the function parameter x1. Moreover, the analysis must
link the abstract values of the argument with those of the
formal parameter x1 as well as the possible results of the
body with the those of the whole expression.

The [let] clause works analogously to function application:

[let] (Ĉ, ρ̂) |=bpe (let x tl11 tl22)l

iff (Ĉ, ρ̂) |=bpe t
l1
1 ∧

(Ĉ, ρ̂) |=bpe0 t
l2
2 ∧

Ĉ(l1, bpe) ⊆ ρ̂(x, l2)∧
Ĉ(l2, bpe0) ⊆ Ĉ(l, bpe)
where bpe0 = bpe[x 7→ l2]

In the [if] clause, each branch contributes to a valid analysis:

[if] (Ĉ, ρ̂) |=bpe (if tl00 tl11 tl22)l

iff (Ĉ, ρ̂) |=bpe t
l0
0 ∧

(Ĉ, ρ̂) |=bpe t
l1
1 ∧

Ĉ(l1, bpe) ⊆ Ĉ(l, bpe)∧
(Ĉ, ρ̂) |=bpe t

l2
2 ∧

Ĉ(l2, bpe) ⊆ Ĉ(l, bpe)

5.2.3 Primitives
Each primitive has its own associated flow behavior. Pair

construction and selection serve as examples.
The [cons] rule for the pair constructor is straightforward:

A cons produces an abstract pair from abstract values with
the labels of its arguments, under the original birthplace
environment:

[cons] (Ĉ, ρ̂) |=bpe (cons tl11 tl22)l

iff (Ĉ, ρ̂) |=bpe t
l1
1 ∧

(Ĉ, ρ̂) |=bpe t
l2
2 ∧

(l1, l2, bpe) ∈ Ĉ(l, bpe)

The [car] and [cdr] clauses are also straightforward: They
induce validity constraints on the argument, and then sim-
ply pick the first or second component respectively of the
abstract pairs flowing into it:

[car] (Ĉ, ρ̂) |=bpe (car tl00)l

iff (Ĉ, ρ̂) |=bpe t
l0
0 ∧

(∀(l1, l2, bpe0) ∈ Ĉ(l0, bpe).

Ĉ(l1, bpe0) ⊆ Ĉ(l, bpe))

[cdr] (Ĉ, ρ̂) |=bpe (cdr tl00)l

iff (Ĉ, ρ̂) |=bpe t
l0
0 ∧

(∀(l1, l2, bpe0) ∈ Ĉ(l0, bpe).

Ĉ(l2, bpe0) ⊆ Ĉ(l, bpe))

5.2.4 Definitions
The [defvar] and [defun] clauses extend the notion of

valid scope analyses to entire programs. The [defvar] clause
handles variable definitions:

[defvar] (Ĉ, ρ̂) |=bpe (defvar x tl00) p

iff (Ĉ, ρ̂) |=bpe t
l0
0 ∧

Ĉ(l0, bpe) ⊆ ρ̂(x, bpe(x))∧
(Ĉ, ρ̂) |=bpe p

A valid analysis must reflect the value initially bound to the
variable. It must also associate the variable x with its ab-
stract values under the current binding bpe(x). Moreover, a
valid analysis must take into account the rest of the program
p, too.

The [defun] clause registers the procedure in the abstract
environment. As in the [defvar] clause, the rest of the pro-
gram p must be valid as well.

[defun] (Ĉ, ρ̂) |=bpe (defun x0 (x1) e) p
iff (func (x1) e) ∈ ρ̂(x0, �)∧

(Ĉ, ρ̂) |=bpe p

5.2.5 Values
So far, the definition of the relation |= for all possible

expressions and programs checks whether a certain analysis
for a program is valid or not. Now, the next goal is to show

that valid analyses agree with the semantics—that is, that
they are semantically correct. However, the reduction rules
generate intermediate terms not covered by the rules so far.
Here they are:

[const] (Ĉ, ρ̂) |=bpe (prim c)l

iff ω ∈ Ĉ(l, bpe)

[sym] (Ĉ, ρ̂) |=bpe (sym s)l

iff s ∈ Ĉ(l, bpe)

[proc] (Ĉ, ρ̂) |=bpe (func (x) e0)
l

iff (func (x) e0) ∈ Ĉ(l, bpe)

The [const], [sym], and [proc] clauses are identical to their
equivalents [c], [quote], and [lam] because their semantics
are identical.

The [pair] clause is a simpler version of the [cons] clause.
The only difference is—since a pair already carries two val-
ues in it—that it is unknown under which prior birthplace
environment the evaluation took place. The only require-
ment is that a suitable birthplace environment bpe0 exists:

[pair] (Ĉ, ρ̂) |=bpe (pair vl11 vl22)l

iff ∃bpe0.(Ĉ, ρ̂) |=bpe0 v
l1
1 ∧

(Ĉ, ρ̂) |=bpe0 v
l2
2 ∧

(l1, l2, bpe0) ∈ Ĉ(l, bpe)

5.2.6 Intermediate Expressions
The final clause in the definition of acceptability handles

intermediate bind expressions. A bind expression binds a
variable x to a value v1 during the evaluation of the body
t2:

[bind] (Ĉ, ρ̂) |=bpe (bind x v1 tl22)l

iff (Ĉ, ρ̂) |=bpe0 t
l2
2 ∧

Ĉ(l2, bpe0) ⊆ Ĉ(l, bpe)∧
v1A (ρ̂(x, l2), Ĉ)
where bpe0 = bpe[x 7→ l2]

The [bind] rule requires a valid analysis for the body un-
der a suitably extended birthplace environment bpe0. More-
over, the value of the body becomes the value of the bind

expression. The supplementary constraint v1A (ρ̂(x, l2), Ĉ)
reflects that the actual new binding also has to show up
in the abstract variable environment under the the relevant
birthplace l2; the A relation is explained in the next section.

5.3 The Approximation RelationA
Intuitively, the |= relation determines if a dynamic scope

analysis (Ĉ, ρ̂) correctly reflects the evaluation process of a
program a in an abstract sense. The formulation of |= uses
the approximation relation A that regulates the approxima-
tion of values Val with abstract equivalents. Here is its
formal definition:

A ⊆ Val× V̂al× Ĉache

vA (v̂, Ĉ)
iff ∀c ∀s∀f ∀v1 ∀v2. ((v = c⇒ ω ∈ v̂)∧

(v = s⇒ s ∈ v̂)∧
(v = f ⇒ f ∈ v̂)∧
(v = (pair vl11 vl22)⇒
∃bpe. (l1, l2, bpe) ∈ v̂∧

v1A (Ĉ(l1, bpe), Ĉ)∧
v2A (Ĉ(l2, bpe), Ĉ)))

A holds between a value v and its correct representation
as a set of abstract values and an abstract cache. This is
straightforward except for the treatment of pairs: The rep-
resentation of a pair consists of its components’ creation
points and a birthplace environment. An abstract repre-
sentation however must also map to abstract values for its
components. This is why a value cache Ĉ participates in the
definition of A.

5.4 The Well-Definedness of|=
It is not immediately clear that the acceptability relation
|= from Subsection 5.2 is unambiguous. Structural induction
by itself is not sufficient because the [app] clause is not
compositional.

On the other hand, the specifications of |= can be consid-
ered as a functional

Q :P(Ĉache× Ênv × B̂PEnv ×Exp)→
P(Ĉache× Ênv × B̂PEnv ×Exp)

with

(Ĉ, ρ̂, bpe, (let x tl11 tl22)l) ∈ Q(R) iff

R(Ĉ, ρ̂, bpe, tl11)∧
R(Ĉ, ρ̂, bpe[x 7→ l2], tl22)∧
Ĉ(l1, bpe) ⊆ ρ̂(x, l2)∧
Ĉ(l2, bpe[x 7→ l2]) ⊆ Ĉ(l, bpe)

(Ĉ, ρ̂, bpe, . . .) ∈ Q(R) iff . . .

This change in perspective leads to a specification of |= using
sound mathematical means. Q is a monotone function on
the complete lattice

(P(Ĉache× Ênv × B̂PEnv ×Exp),v)

because

• (P(Ĉache × Ênv × B̂PEnv × Exp),v) is a com-
plete lattice with respect to the partial order R1 v
R2 iff ∀t.t ∈ R1 ⇒ t ∈ R2, and

• Q is a monotone function on this complete lattice—
that is,
∀R1, R2.R1 v R2 ⇒ Q(R1) v Q(R2).

Consequently, Q has a greatest fixed point. Thus, a well-
defined definition of |= works by coinduction as

|= := gfp(Q).

5.5 Acceptability for Environments
Since dynamic scope analysis is ultimately concerned with

scope and hence with environments, it is necessary to extend
the notion of acceptability to environments:

|=⊆ Ĉache× Ênv × B̂PEnv ×Env

(Ĉ, ρ̂) |=bpe ρ iff ∀x ∈ dom(ρ).ρ(x)A (ρ̂(x, bpe(x)), Ĉ)

This acceptability relation for environments examines ev-
ery binding in an actual environment which occurs during
evaluation and relates it to its abstract counterpart for cor-
rectness.

5.6 Acceptability for Configurations
The combination of the acceptability relation for programs

with that for environments produces an acceptability rela-
tion for configurations—combinations of environments and

expressions:

|=⊆ Ĉache× Ênv × B̂PEnv ×Conf

(Ĉ, ρ̂) |=bpe ρ, e iff (Ĉ, ρ̂) |=bpe ρ∧
(Ĉ, ρ̂) |=bpe e

Furthermore, it is possible to define an acceptability relation
for program configurations—combinations of programs and
environments:

|=⊆ Ĉache× Ênv × B̂PEnv ×PConf

(Ĉ, ρ̂) |=bpe ρ, p iff (Ĉ, ρ̂) |=bpe ρ∧
(Ĉ, ρ̂) |=bpe p

6. SEMANTIC CORRECTNESS
The semantics developed in Section 4 employs evaluation

contexts and rewriting rules. Hence, the specification of the
semantics uses almost exclusively syntactical means with the
exception of the notion of environments: a program tran-
sitions through a sequence of configurations which include
valid programs or expressions until it reaches a final value,
gets stuck or loops forever.

The definition of the acceptability relation in the previ-
ous section was derived intuitively. A correctness proof is
necessary which must show that every valid analysis stays
valid under the evaluation process.

This section summarizes the most import lemmas and
theorems involved in the proof. For details, the reader is
referred to Neubauer’s thesis dissertation [21]. The first
lemma states that a dynamic scope analysis is valid for a
value if and only if the value is part of the abstract cache at
its label and the given bpe:

Lemma 1 (Ĉ, ρ̂) |=bpe v
l iff vA (Ĉ(l, bpe), Ĉ)

Proof. By structural induction over v.

Another lemma states the obvious assumption, that if an
abstract value v̂1 is a correct approximation of a true value v,
it is also a correct approximation of another abstract value
v̂2 which includes the former one:

Lemma 2 If vA (v̂1, Ĉ) and also v̂1 ⊆ v̂2 then vA (v̂2, Ĉ).

Proof. By structural induction over v. Each case of the
proof is obtained individually by inspecting the definition of
A.

The specification of the acceptability relation has the im-
portant property stated by the following lemma: if an anal-
ysis is valid for a term t at label t1, and the abstract values
flowing through it are all contained in the values flowing
through label l2, the analysis is also valid at label l2:

Lemma 3 If (Ĉ, ρ̂) |=bpe t
l1 and Ĉ(l1, bpe) ⊆ Ĉ(l2, bpe) then

also (Ĉ, ρ̂) |=bpe t
l2 .

Proof. by case analysis over the rules of Term. As an
example, here is the case for setq expressions:
From the first premise

(Ĉ, ρ̂) |=bpe (setq x tl00)
l1

follows

(Ĉ, ρ̂) |=bpe t
l0
0 (1)

Ĉ(l0, bpe) ⊆ ρ̂(x, bpe(x)) (2)

Ĉ(l0, bpe) ⊆ Ĉ(l1, bpe) (3)

by the [setq] clause of |=. The assumption together with
(3) yields

Ĉ(l0, bpe) ⊆ Ĉ(l2, bpe). (4)

The backwards application of the [setq] clause together with
(1) and (2) yields the proposition. The other cases work
analogously.

Another central insight is that the validity of the dynamic
scope analysis of an expression carries over those subexpres-
sions which are in an evaluation context. Even stronger,
such a subexpression can be replaced by another valid one
without violating its validity. With this result, the further
proof of the correctness of a reduction step can concen-
trate on the possible redexes of all expressions; the following
lemma then allows us to generalize the result to the big pic-
ture. This facility is known as replacement lemma in the
realm of combinatory logic [13]:

Lemma 4 If (Ĉ, ρ̂) |=bpe E [tl11] where E [tl11] is carrying the
label l, then there exists bpe0 such that

a) (Ĉ, ρ̂) |=bpe0 t
l1
1 holds.

b) If also (Ĉ, ρ̂) |=bpe0 t
l1
2 then (Ĉ, ρ̂) |=bpe E [tl12].

c) If also E ∈ VarContext(x) then bpe0(x) = bpe(x).

Proof. Structural induction over E .

The first main theorem is subject reduction for expressions
under the reduction relation →. A valid dynamic scope
analysis for an expression e and a correct approximation of
the environment stay valid after one step with → for the
resulting expression e′ and the modified environment:

Theorem 1 If (Ĉ, ρ̂) |=bpe ρ, e and ρ, e → ρ′, e′ then also

(Ĉ, ρ̂) |=bpe ρ
′, e′.

Proof. By case analysis over the reduction relation→.

The second theorem formulates subject reduction for entire
programs, adapting the previous theorem one to the reduc-
tion relation →p:

Theorem 2 If (Ĉ, ρ̂) |=bpe ρ, p and ρ, p →d ρ
′, p′ then also

(Ĉ, ρ̂) |=bpe ρ
′, p′.

Proof. By case analysis over →d.

7. IMPLEMENTATION
The definition of the acceptability relation presented in

Section 5.2 is a blueprint for a practical implementation of
a dynamic scope analysis. Our own analysis is constraint-
based [1]; it uses a set of syntactic entities to represent appli-
cations of the rules generated by the acceptability relation.
The analysis, just like every other constraint-based program
analysis, consists of two phases: constraint generation and
constraint simplification.

In the following we consider a fixed program p∗ and de-
scribe how to compute the least dynamic flow analysis for p∗
which is acceptable with respect to the acceptability relation
|=.

Since the program p∗ is finite, it is possible to enumerate
all its occurring labels, symbol, and functions. We call these
finite sets Lab∗, SymVar∗ and Fun∗, respectively. Simi-
larly, the sets of possibly occurring birthplace environments

B̂PEnv∗ and possibly occurring abstract pairs Ĉons∗ are
also identifiable and finite. Accordingly, the finite set of all
abstract values that are conceivable for all possible program
runs of p∗ is

a ∈ Abs∗ = SymVar∗ ∪ {ω} ∪ Fun∗ ∪ Ĉons∗.

The finite sets serve as basis for the specification of the dy-
namic scope analysis for a program p∗.

7.1 Generating Constraints
In the constraints generated by the analysis, flow vari-

ables V stand for sets of abstract values. A flow variable
Cl,bpe stands for the set of abstract values in the abstract
cache at label l and birthplace environment bpe. A flow
variable rx,l stands for a set of abstract values in the ab-
stract environment.

A constraint co in our analysis belongs to one of three
different kinds. A simple constraint of the form

{a} ⊆ V,

where a is an abstract value of Abs∗, states that a certain
abstract value amust be member of the set of abstract values
A. A variable constraint

V0 ⊆ V1

says that the abstract values of V0 are all contained in those
of V1. A conditional constraint

{a} ⊆ V =⇒ co

where a is an abstract value of Abs∗ and co is another
constraint, states that the constraint co must hold if the
abstract value a is a member of the set of abstract values
denoted by V.

By inspecting the rules of the acceptability relation, we
define the function GJpKbpeM that constructs the set of con-
straints to be solved, as shown in Figure 3. Its first pa-
rameter is the program or expression for which constraints
are generated. The second one, bpe, is the birthplace envi-
ronment, relative to which the generation of the constraints
takes place. The third parameter, M, is a set of pairs of
a label of a body of a procedure lb and a birthplace envi-
ronment bpe each. This set memoizes instances of pairs of
procedures and birthplace environments already handled by
the constraint generation. The analysis uses it to prevent
generating duplicate constraints.

GJclKbpeM = {{ω} ⊆ Cl,bpe}
GJ(quote s)lKbpeM = {{s} ⊆ Cl,bpe}
GJ(lambda (x) e0)

lKbpeM = {{(func (x) e0)} ⊆ Cl,bpe}
GJxlKbpeM = {rx,bpe(x) ⊆ Cl,bpe}
GJ(setq x tl00)lKbpeM = GJtl00 KbpeM ∪ {Cl0,bpe ⊆ rx,bpe(x)}

∪ {Cl0,bpe ⊆ Cl,bpe}
GJ(tl00 tl11)lKbpeM = GJtl00 KbpeM ∪ GJtl11 KbpeM

∪ {{(func (x1) t
lb
b)} ⊆ Cl0,bpe =⇒ co

| (func (x1) t
lb
b) ∈ Fun∗,

bpe0 = bpe[x1 7→ lb],
(lb, bpe0) 6∈ M,
M′ =M∪ {(lb, bpe0)},
co ∈ GJtlbb Kbpe0M′}

∪ {{(func (x1) t
lb
b)} ⊆ Cl0,bpe =⇒ Cl1,bpe ⊆ rx1,lb

| (func (x1) t
lb
b) ∈ Fun∗}

∪ {{(func (x1) t
lb
b)} ⊆ Cl0,bpe =⇒ Clb,bpe[x11 7→lb] ⊆ Cl,bpe

| (func (x1) t
lb
b) ∈ Fun∗}

GJ(let x tl11 tl22)lKbpeM = GJtl11 KbpeM ∪ GJtl22 KbpeM
∪ {Cl1,bpe ⊆ rx,l2}
∪ {Cl2,bpe[x7→l2] ⊆ Cl,bpe}

GJ(if tl00 tl11 tl22)lKbpeM = GJtl00 KbpeM ∪ GJtl11 KbpeM}
∪ {Cl1,bpe ⊆ Cl,bpe}
∪ GJtl22 KbpeM}
∪ {Cl2,bpe ⊆ Cl,bpe}

GJ(cons tl11 tl22)lKbpeM = GJtl11 KbpeM ∪ GJtl22 KbpeM
∪ {{(l1, l2, bpe)} ⊆ Cl,bpe}

GJ(car tl00)lKbpeM = GJtl00 KbpeM ∪ {{(l1, l2, bpe0)} ⊆ Cl0,bpe =⇒ Cl1,bpe0 ⊆ Cl,bpe

| (l1, l2, bpe0) ∈ Cons∗}
GJ(cdr tl00)lKbpeM = GJtl00 KbpeM ∪ {{(l1, l2, bpe0)} ⊆ Cl0,bpe =⇒ Cl2,bpe0 ⊆ Cl,bpe

| (l1, l2, bpe0) ∈ Cons∗}
GJ(defvar x tl00 p)KbpeM = GJtl00 KbpeM ∪ {Cl0,bpe ⊆ rx,bpe(x)}

∪ GJpKbpeM
GJ(defun x0 (x1) e) pKbpeM = {{(func (x1) e)} ⊆ rx0,�} ∪ GJpKbpeM

Figure 3: Generating Constraints.

The constraint generation rules in Figure 3 are mostly
straightforward translations of the corresponding rules of
the acceptability relation.

The most involved case is the treatment of procedure ap-
plications. In addition to the generation of constraints for
the terms at the operator position and the parameter po-
sition, every procedure flowing into the operator triggers
the generation of constraints for its body under the current
birthplace environment via a conditional constraint.

The treatment of the primitives car and cdr works in a
similar way: we do not know, which abstract pairs could
occur at the operator position. Therefore, the anaylsis gen-
erates conditional constraints for all abstract pairs.

The well-definedness and the termination of the algorithm
follow by simple fix-point arguments on a underlying finite
complete lattice.
GJpKbpeM as specified generates a large number of condi-

tional constraints in the application and car and cdr rules,
many of which are never triggered during the constraint-
solving phase. Therefore, our implementation defers the
generation of their right-hand sides until constraint solv-
ing. It would have been possible to specify the analysis this
way from the beginning, but this would mean having to
mix the constraint-generation and constraint-solving phase,
which would obscure the presentation.

7.2 Solving the Constraints
The generated set of constraints express the behavior of

all valid dynamic scope analyses. To get the least dynamic
scope analysis, we close the generated constraints under the
following inference rules S:

[VarProp]
{a} ⊆ V0 V0 ⊆ V1

{a} ⊆ V1

[CondProp]
{a} ⊆ V {a} ⊆ V =⇒ co

co

and write S(CO) for the closure of a set of constraints CO
under S.

The actual dynamic scope analysis results from the solv-
ing phase as all abstract values associated with a variable
V after generating the initial constraints and closing those
constraints under S:

dsa(p)(V) = {a | {a} ⊆ V ∈ S(GJpKbpe� ∅)}

where bpe� denotes the top-level birthplace environment.
For our implementation, we employ the standard tech-

nique of using a graph representation for the constraint set
and apply a worklist algorithm on the graph to compute the
least solution of the original constraints [2, 14, 32].

Package Lines Prims Bps Dynamic Iters Analysis
Bps Time (sec)

mail-utils.el 355 51 63 0 4159 0.96
rfc822.el 378 48 56 1 89428 81.84
add-log.el 718 74 67 1 22284 8.32
pop3.el 839 67 169 5 93640 130.49
footnote.el 975 47 153 0 115930 73.86

Figure 4: Analyzed Emacs Lisp packages, their size in lines of code after macro expansion, the number of
additionally used primitives, the number of birthplaces, the number of birthplaces recognized as dynamic
binding, the number of iterations the worklist algorithm used, and the analysis time.

The worklist algorithm always terminates. Every program
induces only a finite set of abstract values (Abs∗) and there
is only a finite number of potential nodes since there is only
a finite number of program points, variables, and birthplace
environments. Hence, the analysis propagates a finite num-
ber of data objects over a finite number of nodes. The pro-
cess ends after a finite number of steps: at the latest when
every datum has arrived at every node.

The algorithm has exponential worst-case complexity with
respect to the size of the analyzed program: the number
of all possible birthplace environments is already exponen-
tial. However, the next section shows that our prototype
implementation is already practical for medium-sized real-
world examples. Also, since the translation of Emacs Lisp
programs into a new substrate ideally happens only once,
speed is not quite as important as, say, in compilers which
run often. Instead, precision is at a premium.

8. MEETING THE REAL WORLD
Our prototype implementation of the algorithm is in about

5500 lines of Scheme code and runs atop Scheme 48 [15], a
byte-code implementation of Scheme. It handles a large sub-
set of Emacs Lisp programs. Specifically, it correctly deals
with a number of aspects of the language not treated in this
paper including the following:

• multi-parameter functions and optional arguments,

• catch and throw,

• funcall and the duality between functions and their
names, and

• separation of function and value components of bind-
ings.

In this section, we present the results of the analysis run on
various packages taken directly from the XEmacs package
collection. To receive accurate information from real pack-
ages, the implementation must know the flow behavior of a
substantial number of used XEmacs’s primitives.

The implementation contains a small macro language to
describe the flow behavior of basic primitives for which no
implementation in Emacs Lisp exists. Using those macros
simplifies the description of the primitives tremendously.
For instance, the three lines

(primitive-flow (FILENAME)

((const) (union (symbol t)

(symbol nil))))

describes the constraint generation for the built-in primitive
file-exists-p that checks for the existence of a file with a
given name.

Currently, the system emits an annotated version of the
input program, marking those bindings which would have
to stay dynamic under lexical binding. The binding-type
condition which we use to decide to which type a variable
reference belongs, is the following:

Binding-type condition A variable is used dynamically
iff the abstract cache registers some abstract object for the
variable under its label for a different birthplace than the
static one, that is iff

xl0 with static birthplace l1 is dynamic
iff

∃bpe.bpe(x) 6= l1 ∧ Ĉ(l0, bpe) 6= ∅.

Further conditions exist for our implementation to recog-
nize Emacs Lisp lets used in the flavor of statically scoped
let*’s or letrec’s in Scheme.

The results in this section were obtained by running the
implementation under the Scheme system Scheme 48 0.53 on
an Athlon 1 GHz system with 256 kByte second-level cache
and 256 MByte of physical memory. We did not put any
effort to highly optimize or to compile our implementation
to native code; feasibility was our main concern.

Figure 4 lists the packages used for the experimental re-
sults. They are all part of the regular XEmacs distribu-
tion. Mail-utils contains utility functions used both by
the other packages rmail and rnews. Rfc822 implements
a parser for the standard internet messages. Pop3 provides
POP3 functionality for email clients. Add-log lets a pro-
grammer manage files of changes for programs. Footnote

offers the functionality to add footnotes to XEmacs buffers.
Figure 4 shows that the analysis is highly accurate: it only

leaves behind a small number of dynamic binding constructs.

9. LIMITATIONS
While the analysis described here solves some of the hard-

est problems associated with translating Emacs Lisp pro-
grams to readable Scheme programs, a few remain:

eval Emacs Lisp has an eval function which interprets a
piece of data as an Emacs Lisp expression. Its seman-
tics is naturally quite undefined in a Scheme environ-
ment. Except for simple cases (for example, where
the expression to be evaluated is a symbol), there is
no idiomatic translation for eval forms. Programmers
must transform the Emacs Lisp code not to use eval

before attempting translation. Dynamic generation of
symbols as well as some introspection capabilities of
the language also belong in this category.

buffer-local variables Emacs Lisp features buffer-local
variables which implicitly change value according to
the current buffer. This an unfortunate conflation of
the language semantics and the application domain,
and often yields to unexpected and hard-to-track be-
havior of Emacs Lisp code. However, buffer local-
ity is usually a global property of variables—programs
rarely use the same variable both buffer-locally and
buffer-globally. Hence, a feasible approach is to trans-
late buffer-local variables into special designated data
structures and access them via special constructs rather
than preserving their implicit nature. No special anal-
ysis is required as long as the calls to make-variable-

buffer-local are close to their variable declarations.

Note that these kinds of problems are inherent in almost any
translation from one programming language to another, if
maintainability is to be preserved.

10. RELATED WORK

10.1 Dynamic Binding
Despite the fact that languages with dynamic variable

binding have existed for a long time, formulations of se-
mantics for these languages are quite rare. On the other
hand, it is folklore that dynamic binding can be eliminated
by a dynamic-environment passing translation that makes
the dynamic bindings explicit [24].

Gordon [9] initially formalized dynamic binding in the
context of early Lisp dialects and studied their metacircular
interpreters, using denotational semantics.

Moreau [20] rounded up the view on dynamic binding by
introducing a syntactic theory of dynamic binding with a
calculus allowing equational reasoning. From this theory,
he also derived a small-step semantics using evaluation con-
texts and syntactic rewriting as developed by Felleisen and
Friedman [6]. Wright and Felleisen [30, 31] and Harper and
Stone [11] formulated semantics for exception mechanisms
which also employ a kind of dynamic binding.

Lewis at al. [17] introduce a language feature called im-
plicit parameters that provides dynamically scoped variables
for languages with Hindley-Milner type systems, and formal-
ize it with an axiomatic semantics. However, functions with
implicit parameters are not first-class values in their setting.

10.2 Flow Analysis
Most realistic implementations of flow analysis for func-

tional programming languages are simple monovariant (or
0-CFA) flow analyses [12, 7, 8, 26], that is, the analysis
looks at every program point independent of context.

Shivers [27] proposed the splitting of the analysis at a
function call sites depending on the context of the last recent
k procedure calls (called k -CFA). Other splittings, also de-
pending on procedure calls, were proposed by Jagannathan
and Weeks [14] as poly-k -CFA and by Wright and Jagan-
nathan [32] as polymorphic splitting.

The concept of coinduction arose from Milner and Tofte’s
works [18] on semantics and type systems of an extended λ-
calculus with references. Nielson and Nielson were the first
to use coinduction as a means for specifying a static analysis

[22]. Their work provides the theoretical framework for the
specification of our analysis.

10.3 Subject reduction
The notion of correctness we used is generally called a sub-

ject reduction result. Curry and Feys [5] introduced subject
reduction to show the correctness of predicates in the lan-
guages of combinatory logic. Mitchell and Plotkin [19] used
the idea to show a type correctness result for a λ-calculus
like language, whereas Wright and Felleisen [30, 31] adapted
it to the more flexible concept of operational semantics with
reduction rules and evaluation contexts. Wright and Jagan-
nathan [32] used the same technique for their polymorphic
splitting flow analysis.

10.4 Emacs Lisp and Scheme
A number of other projects have built or are currently

building Scheme-based variants of Emacs. The oldest is
Matt Birkholz’s Emacs Lisp interpreter which allows run-
ning Emacs Lisp programs on top of MIT Scheme’s Edwin
editor. Current efforts include Ken Raeburn’s work on creat-
ing a Guile-based Emacs [25], the Guile Emacs project [10]
as well as Per Bothner’s JEmacs [3, 4] which aims at re-
implementing Emacs atop Java bytecodes, leveraging Both-
ner’s Kawa compiler for Scheme. As far as Emacs Lisp is
concerned, only JEmacs seems to have seen significant work
as far as making Emacs Lisp programs run. None of these
projects address permanently translating Emacs Lisp code
to Scheme while retaining maintainability.

11. CONCLUSION AND FUTURE WORK
We have specified, proved correct and implemented a flow

analysis for Emacs Lisp whose distinguishing feature is its
correct handling of dynamic binding. The primary purpose
of the analysis is to aid translation of Emacs Lisp programs
into more modern language substrates with lexical scoping
since most binding in real Emacs Lisp programs behaves
identically under lexical and dynamic scoping. Our analysis
is highly accurate in practice. Our prototype implementa-
tion is reasonably efficient.

We have two main directions for future research:

• Improving the efficiency of the analysis by ordinary
optimization, compilation code and modularization of
the constraints [8], and

• integration of the analysis into a translation suite from
Emacs Lisp to Scheme.

Acknowledgments.We would like to thank the initial mem-
bers of the el2scm project: Martin Gasbichler, Johannes
Hirche, and Peter Biber. Specifically, Peter Biber devel-
oped a precursor to the analysis presented here, demonstrat-
ing the feasibility of the project. Peter Thiemann provided
valuable suggestions for the paper. We also thank the ICFP
referees for valuable comments.

12. REFERENCES
[1] A. Aiken. Set constraints: Results, applications and

future directions. Lecture Notes in Computer Science,
874:326–335, 1994.

[2] A. Aiken and E. Wimmers. Type inclusion constraints
and type inference. In Proceedings of the FPCA 1993,
pages 31–41, 1993.

[3] P. Bothner. JEmacs-the java/scheme-based emacs. In
Proceedings of the FREENIX Track: 2000 USENIX
Annual Technical Conference (FREENIX-00), pages
271–278, Berkeley, CA, June 18–23 2000. USENIX
Ass.

[4] P. Bothner. JEmacs—the Java/Scheme-based Emacs
text editor. http://jemacs.sourceforge.net/, Feb.
2001.

[5] H. B. Curry and R. Feys. Combinatory Logic,
volume I. North-Holland, Amsterdam, 1958.

[6] M. Felleisen and D. P. Friedman. Control operators,
the SECD-machine, and the λ-calculus. In M. Wirsing,
editor, Formal Description of Programming Concepts
III, pages 193–217. North-Holland, 1986.

[7] C. Flanagan and M. Felleisen. Set-based analysis for
full scheme and its use in soft-typing. Technical
Report TR95-254, Rice University, Oct., 1995.

[8] C. Flanagan and M. Felleisen. Componential set-based
analysis. ACM Transactions on Programming
Languages and Systems, 21(2):370–416, Mar. 1999.

[9] M. J. C. Gordon. Programming Language Theory and
its Implementation. Prentice-Hall, 1988.

[10] Guile Emacs. http://gemacs.sourceforge.net/, July
2000.

[11] R. Harper and C. Stone. An interpretation of
Standard ML in type theory. Technical Report
CMU-CS-97-147, Carnegie Mellon University,
Pittsburgh, PA, June 1997. (Also published as Fox
Memorandum CMU-CS-FOX-97-01.).

[12] N. Heintze. Set-based analysis of ML programs. In
ACM Conference on Lisp and Functional
Programming, pages 306–317, 1994.

[13] R. Hindley and J. Seldin. Introduction to Combinators
and λ-Calculus, volume 1 of London Mathematical
Society Student Texts. Cambridge University Press,
1986.

[14] S. Jagannathan and S. Weeks. A Unified Treatment of
Flow Analysis in Higher-Order Languages. In POPL,
1995.

[15] R. A. Kelsey and J. A. Rees. A tractable Scheme
implementation. Lisp and Symbolic Computation,
7(4):315–335, 1995.

[16] B. Lewis, D. LaLiberte, R. Stallman, and the GNU
Manual Group. GNU Emacs Lisp reference manual.
http://www.gnu.org/manual/elisp-manual-20-2.5/

elisp.html, 1785.

[17] J. Lewis, M. Shields, E. Meijer, and J. Launchbury.
Implicit parameters: Dynamic scoping with static
types. In Proceedings of the 27th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Boston, Massachusetts,
pages 108–118, Jan 2000.

[18] R. Milner and M. Tofte. Co-induction in relational
semantics. Theoretical Computer Science, 87:209–220,
1991.

[19] J. C. Mitchell and G. D. Plotkin. Abstact types have
existantial type. In ACM Transcations on Programmin
Languages and Systems, volume 10, pages 470–502,
July 1988.

[20] L. Moreau. A Syntactic Theory of Dynamic Binding.
Higher-Order and Symbolic Computation,
11(3):233–279, Dec. 1998.

[21] M. Neubauer. Dynamic scope analysis for Emacs Lisp.
Master’s thesis, Eberhard-Karls-Universität Tübingen,
Dec. 2000. http://www.informatik.uni-freiburg.
de/~neubauer/diplom.ps.gz.

[22] F. Nielson and H. R. Nielson. Infinitary control flow
analysis: a collecting semantics for closure analysis. In
Proc. POPL’97, pages 332–345. ACM Press, 1997.

[23] G. D. Plotkin. A structural approach to operational
semantics. Technical Report DAIMI FN-19, Computer
Science Department, Aarhus University, Aarhus,
Denmark, Sept. 1981.

[24] C. Queinnec. Lisp in Small Pieces. Cambridge
University Press, 1996.

[25] K. Raeburn. Guile-based Emacs.
http://www.mit.edu/~raeburn/guilemacs/, July
1999.

[26] M. Serrano and M. Feeley. Storage use analysis and its
applications. In Proceedings of the 1fst International
Conference on Functional Programming, page 12,
Philadelphia, June 1996.

[27] O. Shivers. Control-Flow Analysis of Higher-Order
Languages. PhD thesis, Carnegie-Mellon University,
May 1991.

[28] R. Stallman. GNU extension language plans. Usenet
article, Oct. 1994.

[29] B. Wing. XEmacs Lisp Reference Manual.
ftp://ftp.xemacs.org/pub/xemacs/docs/a4/

lispref-a4.pdf.gz, May 1999. Version 3.4.

[30] A. K. Wright and M. Felleisen. A syntactic approach
to type soundness. Technical Report 91-160, Rice
University, Apr. 1991. Final version in Information
and Computation 115 (1), 1994, 38–94.

[31] A. K. Wright and M. Felleisen. A syntactic approach
to type soundness. Information and Computation,
115(1):38–94, 1994. Preliminary version in Rice TR
91-160.

[32] A. K. Wright and S. Jagannathan. Polymorphic
splitting: an effective polyvariant flow analysis. ACM
Transactions on Programming Languages and
Systems, 20(1):166–207, Jan. 1998.

