Six Years of FUNAR

Functional Training for Software Architects

Michael Sperber
sperber@deinprogramm.de
Active Group GmbH
Tibingen, Germany

Abstract

Since 2019, the International Software Architecture Qualifi-
cation board has featured a three-day curriculum for Func-
tional Software Architecture. We have taught more than 30
trainings based on this curriculum, mostly to audiences with
little or no exposure to functional programming. This paper
reports on our experience, and how content and delivery of
the training has evolved over the past four years.

CCS Concepts: - Computer systems organization — Ar-
chitectures; « Software and its engineering — Software
architectures; Functional languages.

Keywords: functional programming, software architecture,
education

ACM Reference Format:

Michael Sperber. 2025. Six Years of FUNAR: Functional Training for
Software Architects. In Proceedings of the 3rd ACM SIGPLAN Inter-
national Workshop on Functional Software Architecture (FUNARCH
’25), October 12—18, 2025, Singapore, Singapore. ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/3759163.3760428

1 Introduction

In late 2017, Active Group (“we”), a small consultancy in
southern Germany, started developing a curriculum on “Func-
tional Software Architecture” to use in professional training,
which is now part of the Advanced Level certification pro-
gram of the International Software Architecture Qualifica-
tion Board (iSAQB) under the acronym FUNAR [13].

We have since taught more than 30 iterations of this train-
ing as three-day courses, with a one-day prequel course on
functional programming. This paper reports on our journey
so far, the curriculum design process, and our experience
teaching it to diverse audiences.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
FUNARCH 25, Singapore, Singapore

© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-2146-5/25/10
https://doi.org/10.1145/3759163.3760428

Overview. Section 2 provides some background on the
history leading up to the creation of FUNAR. Section 3 de-
scribes the design and rationale of the original curriculum.
Section 4 describes the design of our concrete training. Sec-
tion 5 describes our experience teaching the training and the
evolution it has gone through. Section 6 briefly touches upon
the curriculum revision made on the basis of the experience
gained. Section 7 concludes.

2 Background

We have used functional programming in almost all of our
projects since 2010. Since 2012, we had also been developing
a professional training business. Initially, this resulted in
only sporadic bookings for in-house courses. In the winter
0f 2017/2018, we determined that we needed help marketing
our training offering. We contacted the International Soft-
ware Architecture Qualification Board (iISAQB), a volunteer-
driven association based in Germany whose goal is to further
education on software architecture—techniques, tools, and
processes that help with managing large software projects.

The iSAQB offers a single, widely taught “Foundation
Level” curriculum with basic tenets of software architec-
ture [14], as well as an “Advanced Level” certification pro-
gram with a variety of different trainings on subjects such
as Domain-Driven Design, embedded systems, cloud archi-
tecture, and microservice architectures.

Together with a few iSAQB members—notably Stefan
Tilkov and Eberhard Wolff—we explored the possibility of
adding a curriculum on Functional Software Architecture.
We also enlisted the help of Nicole Rauch to develop the
curriculum, as we had little experience engaging with the
software architecture community at large, and lacked a com-
mon terminological basis.

3 Curriculum Design

When we started to draft the curriculum, we realized that
there was no coherent, written-up discipline for functional
programming in the large, even though many companies
had successfully deployed large functionally programmed
software systems. Consequently, we wrote up the functional
programming techniques most relevant to our daily work,
with a focus on those that differ from object-oriented method-
ologies. The first draft had the following sections, aiming for
a length of three days (common for ISAQB curricula):


https://doi.org/10.1145/3759163.3760428
https://doi.org/10.1145/3759163.3760428

FUNARCH ’25, October 12-18, 2025, Singapore, Singapore

Introduction to functional programming We assum-
ed that programming would play a significant role in
the training. Also, we wanted to make the course ac-
cessible to software architects who have not had any
experience in functional programming.

Immutable data and state In our experience develop-
ing software functionally, immutability was the largest
pragmatic difference in our daily work compared to
object-oriented projects.

Modeling with Combinators Combinator libraries are
a folk tenet of functional programing and play a role
in many of our projects. They are however largely
unknown in object-oriented programming circles—
despite the fact that combinators play fairly well with
object-oriented architecture.

Higher-Level Abstractions We wanted to cover alge-
braic concepts such as semigroups, monoids, functors,
and monads, to help structure domain models as well
as design higher-level abstractions.

Modularization Developers with an object-oriented back-

ground use classes and interfaces, and the combination
of classes and behavior to organize their code. To ad-
dress this background, the curriculum draft included a
section on functional modularization techniques, not-
ing that functional languages offer a wide variety of
mechanisms to support them.

Domain-Specific Languages Many functional software
projects include domain-specific languages, so it was
natural to include this in the curriculum as an archi-
tectural technique.

This draft generated feedback from the ISAQB, specifically
from Eberhard Wolff. It became clear that the headings (ex-
cept maybe for “immutable data”) were largely incomprehen-
sible to an audience of object-oriented developers. Eberhard
encouraged us to think of architectural techniques in terms
of the requirements they help fulfill. Moreover, he suggested
separating “programming” from “architecture”. The latter
point proved difficult, as the FP literature usually expresses
architectural techniques in terms of code. We decided to
elide the introduction to functional programming, making
functional programming skills a prerequisite for the training.
(More on the practical consequences of this later.)

It proved beneficial to view functional architecture through
the lens of “regular” software architecture, and we ended up
following the outline of a popular book on the subject [2].
The resulting structure was as follows:

System structure This section covered the basic tenets
of structuring functional software systems: functions
and values, composition, types, and modules.

Technologies This section provided a guide to the salient
properties that distinguish functional languages from
each other, such as typed vs. untyped, strict vs. lazy
evaluation, and proper tail calls.

Michael Sperber

Implementation of functional requirements This
section contained the material on combinator libraries
and DSLs. Moreover, it referenced Domain-Driven De-
sign (DDD), an important collection of techniques for
domain modeling and organizing large projects. (More
on this in section 5.3.)

Implementation of non-functional requirements
This section covered parallelism, distribution, and per-
sistence. We included event sourcing [9] even though
it is not an originally functional concept, as its focus
on immutability is a better match for functional archi-
tecture than the traditional data warehouse.

Architectural patterns This section collected the mate-
rial on algebraic concepts. We also added more explicit
mention of functional data structures, and the ensu-
ing usage patterns, as well as the Model-View-Update
pattern for UI development [5].

Example for functional software architecture This
is amandatory section in iSAQB curricula, and requires
studying an example of functional architecture as part
of the training.

This curriculum—for three six-hour days of training—was
approved by the iSAQB and released in 2018, and has been
available for use by training providers since then. The iSAQB
eventually assigned Michael Sperber and Lars Hupel as cu-
rators.

4 Training Design

In 2019, we designed a concrete training. In order to attract
software architects with no prior functional-programming
exposure, we prefixed the three-day training with a one-day
introduction to functional programming.

We had previously taught professional two-day and three-
day trainings on functional programming. In those train-
ings, we had focused on systematic program construction
via design recipes [7], which we had developed into an intro
course to programming for universities as part of the Dein-
Programm effort [21, 22]. In addition to the pedagogy, this
approach uses specifically designed teaching languages that
come with the Racket system [4] as well as the DrRacket
development environment [8].

When we started teaching software developers, we as-
sumed that the didactic ideas from DeinProgramm would
carry over, but that we could use a “professional” language
directly instead of the teaching languages. After all, the teach-
ing languages shield students from syntactic warts and poor
error messages, both of which are familiar to developers.
We discovered however that using the teaching languages
and DrRacket was more effective. Essentially, our functional
programming training is now a condensed version of the
intro course, and switches to a different language on the
second or third day. For FUNAR, we further condensed this
introduction into a single day, which contains systematic



Six Years of FUNAR

data modeling using the design recipes, programming with
lists, and higher-order abstractions.

To conduct the architecture training proper, we chose to
switch to a second language. We chose Haskell, to show the
variety and range of design decisions in functional languages—
typed, lazy, indentation-sensitive rich syntax as opposed to
untyped, strict, Lisp-syntax Racket.

Designing the training, we wanted to address a question
that had come up frequently at developer conferences when
introducing functional programming: “but how do you or-
ganize an entire system this way”. We decided to spend a
large part of the training putting together a complete appli-
cation, including a web frontend. This would also cover the
“example” section of the curriculum.

We settled on expanding the Hearts card game that Peter
Thiemann and I had written up as an example for functional
architecture [24]. Hearts requires modest data analysis, has
many rules and also a moderately elaborate workflow.

To the original code, we added an event- and command-
based interface. We also added monadic code to express the
game logic (processing commands into events) and the player
logic (processing events into commands). More on that in
section 5.2.

Besides the simple console-based synchronous version
of the game, we also wrote a concurrent version. This cov-
ered items from the “non-functional requirements” section
of the curriculum. We also hoped that we would be able
to cross-reference Domain-Driven Design with the Hearts
application—see section 5.3.

Moreover, we implemented a web-service interface, and
a simple frontend written in Elm [5] to cover the Model-
View-Update pattern. We chose Elm because it is instantly
readable for folks who know Haskell.

Seperately from the Hearts example, we added a section
on combinator modeling with a simplified version of the
LexiFi DSL for financial contracts [19]. We later added a
variant based on Brent Yogey’s diagrams library [27]. We
also developed a semi-systematic process for developing
combinator libraries, using it in exercises. (Ask for simple
examples, decompose, remove redundancies, abstract, search
for semigroups and monoids.)

Here is the rough schedule of the training:

day topic
0 intro to FP
1 morning | intro to Haskell
afternoon | monoids, functors
2 morning | Hearts: domain model
Hearts: events and commands
afternoon | intro to monads
Hearts: game monad
3 morning | Hearts: macroarchitecture
3 afternoon | Hearts: frontend

combinator modeling

FUNARCH ’25, October 12-18, 2025, Singapore, Singapore

We also designed a floating section for the “technology” part
of the curriculum, presenting different industrially viable
functional languages, along with code examples and various
ways of classifying them.

Moreover, we prepared optional sections on modulariza-
tion and lazy evaluation using John Hughes’s game-search
example [11], and a case study based on XMonad [26], which
involves extensive use of property-based testing.

We also designed a set of exercises to be completed during
the training, including:

e dealing with algebraic concepts, such as constructing
monoids and functors for simple data types,

e constructing combinator models,

e data analysis for the Hearts game,

e design of event and command datatypes for Hearts,

e event processing functions for Hearts,

e writing a semantics for financial contracts.

5 Six Years of FUNAR

Starting in the summer of 2019, we started offering FUNAR
training, and have taught more than 30 iterations, both open
and in-house. The audience has been quite varied, includ-
ing ambitious software developers, experienced software
architects, enterprise architects, and managers—from a wide
range of industries, among them software consultancies,
manufacturing, transportation, automotive, banking, medi-
cal device software, health care, and insurance. Most, but not
all attendees reported being actively interested in functional
architecture, some reported being mainly after the credit
towards an iSAQB Advanced certification. Quite a few atten-
dees had contact with functional programming during their
university studies. A small minority have used functional
programming in their professional setting.

Attendees are able to follow the training, and succesfully
solve the exercises (sometimes in groups), regardless of back-
ground. However, attendees have consistently reported that
the training is exhausting, as the material is far outside their
usual experience in software development. This has required
walking a fine line between covering a significant amount of
material and ensuring that the attendees can actually follow.

Moreover, a few specific issues with the training have
consistently come up. The rest of the section describes those
issues and how we have responded and revised the training.

5.1 Where is the Architecture?

For the first half-dozen or so iterations, the most consistent
issue was this: At the end of the training, attendees reported
that they did not really understand how to develop functional
architecture. This was after having gone through a complete
application, with explanations and exercises on the way,
with every opportunity to ask questions or request further
elaboration. Conversations with the attendees revealed two
reasons for this shortcoming:



FUNARCH ’25, October 12-18, 2025, Singapore, Singapore

e The iSAQB curricula in general make a point of dis-
tinguishing between programming and architectural
activities. During the training, we had been program-
ming throughout—which was not an architectural ac-
tivity in attendees’ minds.

e We never planned a macroarchitectural structure for
the project, but instead proceeded bottom-up from
highly reusable domain logic to finally assembling
the pieces into macroarchitecture at the very end. (In
fact, by the end of the training, we had presented two
or three macroarchitectures for the game.) This is in
marked contrast to the attendees’ experience, which
usually starts from a macroarchitectural pattern such
as hexagonal architecture [3], often supported by a
specific framework such as Spring Boot or Quarkus.!

What this observation also revealed was that we never con-
sciously thought about a specifically functional macroar-
chitectural activity. The macroarchitecture presented in the
training follows the functional core/imperative shell pat-
tern [1], but the imperative shell was a pattern that emerged
from assembling the purely functional parts of the domain
model into a working application. The macroarchitecture
can also be explained in terms of the hexagonal-architecture
pattern. Doing this still did not resolve the attendees’ issue,
however, which was more about the architectural activity
than the resulting static structure of the system.
Nowadays, we emphasize two points early and often:

e We point out the architectural significance of data
modeling throughout, starting with the functional-
programming prequel course. (Design recipes are driven
by data modeling.) It reappears throughout, promi-
nently when modeling with combinators, using mon-
ads (representing processes as data), and performing
functional validation (representing both the validators
and the outcome as data). This is important as data
modeling currently does not play a significant role in
traditional software architecture [20].

e We explain our architectural activity as “late architec-
ture” or “architecture avoidance”, i.e. developing com-
ponents decoupled from their surroundings and thus
reusable in different macroarchitectural contexts. We
stress this throughout the development of the Hearts
example and discuss with attendees what architectural
activities they would have undertaken at the respec-
tive stage of development. This helps resolve the issue
to the attendees’ satisfaction. It did raise amongst our-
selves the question over whether this idea of “late
architecture” is actually a frequently used architec-
tural process among functional programmers, and, if

1A hexagonal architecture separates the domain logic of a software system
from communication with the outside world. Moreover, this communica-
tion is strictly through abstract interfaces (“ports”) that can have different
implementations (“adapters”).

Michael Sperber

so, whether the functional community has explained
this idea adequately.

5.2 Effects

A major issue in functional programming is how to deal with
effects: We designed our training under the assumption that,
in functional programming, we would generally try to avoid
using effects and, if we could not, restrict and document
their use. We had chosen to discuss effects in the context
of player strategies: A player might combine a variety of
different effects into a strategy. The game must combine the
strategies of all players—where each one potentially uses a
different set of effects.

Our first iteration implemented this idea using monad
transformers [15] that allow assembling an effect stack from
individual effects. However, using monad transformers in a
modular fashion—where different parts of a program access
different parts of the transformer stack—requires abstract-
ing all monadic code over the concrete monad. This in turn
is difficult to manage with higher-order code that passes
monadic actions in data structures. We also found no satis-
factory didactic approach to explain this idea to attendees,
who consistently expressed confusion over the approach,
and dismay at the high overhead this required.

The alternative approach recommended by some indus-
trial Haskell folks—“just use I/O”—seemed, while pragmatic,
unsatisfactorily coarse-grained after 25+ years of research
into doing effects in Haskell. (Similarly for the ReaderT pat-
tern.) We investigated effects libraries, and settled on Poly-
semy [17], which allowed us express the player effects and
compose them in a modular fashion. This change somewhat
alleviated the confusion among attendees. However, the type-
level programming Polysemy made practical exercises using
it out of reach. Consequently, we refactored again. As part
of the training, we had always introduced monads via a free-
monad construction for simple database programs. We used
the same approach to construct a “Game monad”, where the
relevant operations come naturally out of a description of
gameplay. The reference implementation looks like this:

data Game a =
PlayValid Player Card (Bool -> Game a)
| RoundOver (Maybe (Trick, Player) -> Game a)
| PlayerAfter Player (Player -> Game a)
| GameOver (Maybe Player -> Game a)
| RecordEvent GameEvent (() -> Game a)
| Return a

The PlayValid checks whether a certain move is valid within
the game. RoundOver checks whether the trick is full and
the current round is over, returning the trick and the player
who needs to pick it up. PlayerAfter determines whose
turn it is after a named player. Finally, GameOver returns
the winner if the game is over. Return is the return of the



Six Years of FUNAR

monad. RecordEvent uses the event datatype from the previ-
ous event exercise to announce that the game has progressed.

Attendees can construct this monad as an exercise, along
with the description of gameplay using the monad, and the
command-processing code. This solved our didactic prob-
lems, and had pleasant consequences: The concept of ex-
pressing domain operations as monad operations, rather than
going directly to standard monads like state and reader is con-
sistent with Domain-Driven Design and coincides with a talk
Andres Loh gave at BOB 2023 about designing effects [16].
This approach also fits well with a hexagonal architecture:
Domain workflows can be formulated using the monad, but
connecting it to the outside world—analogous to the idea of
connecting ports to the outside world via adapters—happens
via interpretation functions in the imperative shell. More-
over, the approach is usable even in languages without the
type-level capabilities needed to implement effects systems,
and is thus of more direct practical value for attendees.

5.3 Domain-Driven Design

Domain-Driven Design (DDD) [6] is an architectural method-
ology known to many attendees of the FUNAR training.
DDD’s most important concepts are bounded context and
ubiquitous language: “Bounded context” refers to the idea
that a complex software system can be subdivided into parts
mostly independent from each other. Each bounded context
can establish its own models even for entities shared with
other contexts. Within each bounded context, DDD insists
on establishing a common vocabulary among users, domain
experts, and developers, the “ubiquitous language”.

Prima facie, these principles should go well with functional
programming, and several books explain domain-driven de-
sign in functional terms [10, 25]. Moreover, DDD’s modeling
practices focus on modeling processes whereas functional
programming has a rich history of modeling the data ma-
nipulated by the processes as well modeling the procceses
themselves as data with monads and similar abstractions.
Still, Domain-Driven Design has evolved independently from
functional architecture. Thus, “functional DDD” is quite dif-
ferent from typical functional architecture.

Some differences are superficial: significant activities in
domain-driven design are about identifying up-front (poten-
tially mutable) entities and distinguishing them from (purely
descriptive) value objects. This difference plays no signifi-
cant role in functional architecture as domain objects should
all be immutable.

Other differences are more fundamental: Current DDD
practice focusses on modeling “close to the domain”, gen-
erally not straying beyond requirements as formulated by
domain experts. This is quite different from functional design,
which often abstracts early, in particular in connection with
combinator libraries. Attendees often report a disorienting
feeling as they work on the exercises involving abstraction.
Moreover, the design of combinator libraries—through the

FUNARCH ’25, October 12-18, 2025, Singapore, Singapore

process of abstraction and decomposition—often produces
building blocks that have no natural names in the ubiquitous
language of the domain experts.

Furthermore, many DDD practitioners use Behavior-Driven
Development (BDD) [18], actively avoiding data modeling.
In functional design, data modeling and behavior design go
hand-in-hand, as rich data types enable designing appropri-
ate function signatures. Also, the Test-Driven Development
methodology underlying BDD is quite different from the
design recipes. This makes it difficult to explain effective
functional programming in terms of the techniques familiar
to DDD/BDD practitioners, as the underlying activities have
very little in common [23].

These issues are an ongoing concern for the FUNAR train-
ing, and make it difficult to connect functional architecture
to the experience of the attendees. Each has much to offer
the other, however, and much works needs be to done on
integrating DDD and functional architecture [20].

5.4 Optional Material

We have covered a variety of optional topics in FUNAR
trainings, among them AUTOSAR, blockchains, prototyp-
ing using functional programming, and DSL design. We also
turned the JSON deserialization of the Hearts game into an
optional section, covering validation-as-parsing and applica-
tive functors.

5.5 More Languages

At the request of a customer, we developed a Scala-based ver-
sion of the training. The techniques effective in Haskell trans-
late straightforwardly into Scala, making the Scala-based
training very similar to the Haskell version. Other variants
are possible—OCaml and F# should be straightforward. A
Racket version would be quite different, shifting the focus
away from types and possibly treating effects differently.

Occasionally, we demonstrate using the principles taught
in the training in more traditional languages such as Java
or C#, which have gained substantial functional features,
especially in the realm of data modeling. Attendees have
reported that the treatment in the training opened their eyes
as to how these features were intended to be used.

6 Curriculum Revision

In 2023, the FUNAR curators revised the curriculum. The
main goals were to reduce the amount of material to actually
fit in three days and to better align the curriculum with a
proven didactic flow.

Moreover, the iSAQB had adopted an Advanced curricu-
lum on Domain-Specific Languages [12], so the DSL part of
the curriculum could be removed.

We removed the section on “non-functional requirements”
as we had realized that functional architecture generally pro-
ceeds starting with the functional requirements, whereas the



FUNARCH ’25, October 12-18, 2025, Singapore, Singapore

non-functional requirements play a larger role in traditional
software architecture. This makes functional architecture a
good match for typical requirements-gathering processes,
which also start with the functional requirements [20].
Moreover, to better match the curriculum with the activi-
ties familiar to architects and to shape expectations about
macroarchitecture, “functional requirements" and “architec-
tural patterns” were re-organized into the new sections “func-
tional modeling” and “functional macro architecture”.

7 Conclusion

The software architecture and functional programming com-
munities can benefit from each other. Training software
architects in functional architecture is one step in this en-
deavor: Teaching it for six years has shown that we can
introduce the most important tenets of functional program-
ming and functional architecture to OO-trained architects.

Iterating the training has relied on feedback from the
participants, as well as the results of the in-class exercises.
While the feedback has been consistently positive, the impact
of the training on the participants’ work is unclear, and
merits evaluation. This issue (raised by a reviewer) is not
restricted to FUNAR, and we will explore evaluation at the
association level.

The work on FUNAR has made it clear that most of the
knowledge of functional programming in the large is not
comprehensively written up, but is instead scattered among
research papers and folklore. Moreover, functional architects
would do well understanding Domain-Driven Design, apply-
ing its lessons in a functional context, and exploring ways
of integrating the two disciplines.

Acknowledgments

I thank fellow FUNAR trainers Bianca Lutz, Johannes Maier,
Markus Schlegel and Marco Schneider for the discussions
that helped shape and improve our training, as well as the
reviewers for their helpful comments.

References

[1] Gary Bernhardt. 2012. Functional Core, Imperative Shell.
https://www.destroyallsoftware.com/screencasts/catalog/functional-
core-imperative-shell.

[2] Simon Brown. 2012. Software Architecture for Developers: Volume 1 —
Technical leadership and the balance with agility. Leanpub.

[3] Alistair Cockburn. 2005. Hexagonal Architecture. https://alistair.
cockburn.us/hexagonal-architecture/.

[4] Marcus Crestani and Michael Sperber. 2010. Experience Report: Grow-
ing Programming Languages for Beginning Students. In Proceedings of
the 15th ACM SIGPLAN International Conference on Functional Pro-
gramming (Baltimore, Maryland, USA) (ICFP ’10). ACM, 229-234.
doi:10.1145/1863543.1863576

[5] Evan Czaplicki and Stephen Chong. 2013. Asynchronous Func-
tional Reactive Programming for GUIs. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation (Seattle, Washington, USA) (PLDI ’13). ACM, 411-422.
do0i:10.1145/2491956.2462161

Michael Sperber

[6] Eric Evans. 2003. Domain-Driven Design: Tackling Complexity in the

Heart of Software. Addison-Wesley.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram

Krishnamurthi. 2018. How to Design Programs (second ed.). MIT Press.

[8] Robert Bruce Findler, John Clements, Cormac Flanagan, Matthew
Flatt, Shriram Krishnamurthi, Paul Steckler, and Matthias Felleisen.
2002. DrScheme: a programming environment for Scheme. Jour-
nal of Functional Programming 12, 2 (2002), 159--182. doi:10.1017/
50956796801004208

[9] Martin Fowler. 2005. Event Sourcing. https://martinfowler.com/
eaaDev/EventSourcing.html. Blog post.

[10] Debasish Ghosh. 2016. Functional and Reactive Domain Modeling.
Manning.

[11] John Hughes. 1989. Why Functional Programming Matters. Computer
Journal 32, 2 (1989), 98-107.

[12] iSAQB eV. 2023. Domain-Specific Languages. https://github.com/
isagb-org/curriculum-dsl. Release 2023.1-rev1.

[13] iSAQB e.V. 2023. Functional Software Architecture. https://github.
com/isagb-org/curriculum-funar. Release 2023.1-rev0.

[14] iSAQB e.V. 2025. iISAQB Foundation Level Curriculum. https://github.
com/isagb-org/curriculum-foundation. Release 2025.1-rev2.

[15] Sheng Liang, Paul Hudak, and Mark Jones. 1995. Monad Transformers
and Modular Interpreters. In Proceedings of the 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (San
Francisco, California, USA) (POPL ’95). ACM, 333-343. doi:10.1145/
199448.199528

[16] Andres Loh. 2023. Structuring effectful programs. https://bobkonf.de/
2023/loeh.html. Talk at BOB 2023.

[17] Sandy Maguire. 2021. Porting to Polysemy. https:
//reasonablypolymorphic.com/blog/porting-to-polysemy/. Blog post.

[18] Dan North. 2006. Introducing BDD. Better Software (March 2006).
Blog post. https://dannorth.net/introducing-bdd/.

[19] Simon Peyton Jones, Jean-Marc Eber, and Julian Seward. 2000. Com-
posing Contracts: An Adventure in Financial Engineering (Func-
tional Pearl). In Proceedings of the Fifth ACM SIGPLAN International
Conference on Functional Programming (ICFP °00). ACM, 280-292.
doi:10.1145/351240.351267

[20] Michael Sperber. 2025. Things We Never Told Anyone About Func-
tional Programming. In Proceedings of the 25th International Symposium

[7

—

on Trends in Functional Programming, Jeremy Gibbons (Ed.). Springer,
Heidelberg.

[21] Michael Sperber and Marcus Crestani. 2012. Form over Function:
Teaching Beginners How to Construct Programs. In Proceedings of the
2012 Annual Workshop on Scheme and Functional Programming (Copen-
hagen, Denmark) (Scheme ’12). ACM, 81-89. doi:10.1145/2661103.
2661113

[22] Michael Sperber and Herbert Klaeren. 2023. Schreibe Dein Programm!
Tibingen University Press.

[23] Michael Sperber and Henning Schwentner. 2023. DDD and FP Can’t
Be Friends—Yet. https://www.youtube.com/watch?v=kWbALI5IkOA.
Talk at Domain-Driven Design Europe 2023.

[24] Michael Sperber and Peter Thiemann. 2019. Funktionale Soft-
warearchitektur. Java Magazin 9 (Sept. 2019).

[25] Scott Wlaschin. 2018. Domain Modeling Made Functional. O’Reilly.

[26] XMonad [n.d.]. XMonad: a Tiling Window Manager Written in
Haskell. https://xmonad.org/.

[27] Brent A. Yorgey. 2012. Monoids: Theme and Variations (Functional
Pearl). In Proceedings of the 2012 Haskell Symposium (Copenhagen,
Denmark) (Haskell ’12). ACM, 105-116. doi:10.1145/2364506.2364520

Received 2025-06-16; accepted 2025-07-21; revised 16 June 2025


https://www.destroyallsoftware.com/screencasts/catalog/functional-core-imperative-shell
https://www.destroyallsoftware.com/screencasts/catalog/functional-core-imperative-shell
https://alistair.cockburn.us/hexagonal-architecture/
https://alistair.cockburn.us/hexagonal-architecture/
https://doi.org/10.1145/1863543.1863576
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1017/S0956796801004208
https://doi.org/10.1017/S0956796801004208
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://github.com/isaqb-org/curriculum-dsl
https://github.com/isaqb-org/curriculum-dsl
https://github.com/isaqb-org/curriculum-funar
https://github.com/isaqb-org/curriculum-funar
https://github.com/isaqb-org/curriculum-foundation
https://github.com/isaqb-org/curriculum-foundation
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/199448.199528
https://bobkonf.de/2023/loeh.html
https://bobkonf.de/2023/loeh.html
https://reasonablypolymorphic.com/blog/porting-to-polysemy/
https://reasonablypolymorphic.com/blog/porting-to-polysemy/
https://dannorth.net/introducing-bdd/
https://doi.org/10.1145/351240.351267
https://doi.org/10.1145/2661103.2661113
https://doi.org/10.1145/2661103.2661113
https://www.youtube.com/watch?v=kWbALI5Ik0A
https://xmonad.org/
https://doi.org/10.1145/2364506.2364520

	Abstract
	1 Introduction
	2 Background
	3 Curriculum Design
	4 Training Design
	5 Six Years of FUNAR
	5.1 Where is the Architecture?
	5.2 Effects
	5.3 Domain-Driven Design
	5.4 Optional Material
	5.5 More Languages

	6 Curriculum Revision
	7 Conclusion
	Acknowledgments
	References

