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Abstract

Functional paradigms for user-interface (UI) programming
have undergone significant evolution, from early stream-
based approaches, monad-based toolkits mimicking OO prac-
tice to modern model-view-update frameworks. Changing
from the classic Model-View-Controller pattern to functional
approaches drastically reduces coupling and improves main-
tainability and testability. On the other hand, achieving good
modularity with functional approaches is an ongoing chal-
lenge. This paper traces the evolution of functional UI toolk-
its along with the architectural implications of their designs—
including two of our own—summarizes the current state of
the art and discusses remaining issues.
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Implementing applications with graphical user interfaces
(GUI) remains a challenge, and the architecture of these
applications and the UI toolkits they use is still evolving.
This is surprising, as the basic tenet of GUI architecture—
the Model/View separation—has remained unchanged for
almost 50 years now. This paper examines the evolution of
UI toolkits and the resulting application architecture since
their inception from a functional perspective.
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Overview. Section 1 summarizes the software architecture
concepts relevant for the discussion in this paper. Section 2 re-
views the Model-View-Controller pattern, the starting point
for all modern UI toolkits. Section 3 discusses the event loop,
an implementation aspect of many UI toolkits. Section 4
reviews early functional UI toolkits. Section 5 describes a
transition point between these early toolkits and the toolkits
of the modern era—Racket’s Universe teachpack. Section 6
discusses Elm and React, two implementations of the func-
tional Model-View-Update pattern. Section 7 briefly reviews
modern object-oriented toolkits for comparison. The Model-
View-Update pattern still struggles with modularity issues
described in Section 8. Section 9 describes the Reacl toolkit,
designed to tackle these issues at a technical level. Section 10
explains why Ul programming remains a struggle despite
all the technical progress, and Section 11 describes the ar-
chitectural approach that we have developed to deal with it.
Section 13 concludes.

1 UI and Software Architecture

Starting with the Model-View-Controller pattern (MVC) [21]
in the 1970s, the software industry and research community
have produced a plethora of UI toolkits, libraries that provide
the conceptual elements of a Ul—text, input fields, buttons,
lists, menus, grids and more—as objects to be created and
manipulated by the program, henceforth called widgets. Each
toolkit dictates or at least constrains the organization of the
applications that use them.

The job of a Ul toolkit is to enable developers to create and
maintain Ul applications, but these dual requirements—fast
creation and effective long-term maintenance—tend to be in
conflict. This is especially pernicious in practice, as most of
the cost produced by a software system is in maintenance,
not initial creation [24].

This phenomenon seems to be especially pronounced in
GUI applications: The Visual Basic 6 (VB6) environment
for building GUI applications [4] was optimized for fast ini-
tial creation, and as such, it was one of the most successful
such environments of all time. Microsoft relegated VB6 to
“legacy” status in 2008. Despite this, many VB6 applications
are still around at the time of writing, even though their
further development is painful and costly, and their main-
tainers understand the importance of moving away from an
unsupported platform.

Moving away from VBé6 is so difficult because a VB6 appli-
cation typically combines Ul-related code, domain logic, and
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possible interactions with a database in the same function,
making it all but impossible to replace any of these parts of
the system independently. This effectively makes a “big-bang
migration” the only path away from VB6, but this is often
economically infeasible.

The problem of VB6 projects and many other projects
with high maintenance costs is coupling [24], dependencies
between different conceptual building blocks of the software.
Coupling causes changes in one place to require changes
elsewhere. Consequently, the central concern of software
architecture is to enable effective long-term maintenance
by minimizing coupling. A software project can control
coupling through modularization [19]—splitting the project
into building blocks and maintaining strong boundaries—
“modularity”—between them.

The shared concern of UI applications is to establish mod-
ularity between the UI code and the domain logic. For the
rest of this paper, we will examine Ul toolkits and paradigms
with respect to these tenets of software architecture: How do
they impact coupling, modularity, and thus maintainability?

2 Model-View-Controller

MVC is the ancestor of most contemporary Ul paradigms
and frameworks. The original goal of this pattern was to
enable a particular kind of change—changing or replacing
the UI without changing the domain logic. To that end, the
central innovation of MVC was the decoupling of UI code
(“view”) from the domain logic (“model”).

The decoupling between view and model also has other
practical implications, such as for automatic tests. Environ-
ments that strongly couple view and model, such as VB6,
make applications difficult to test, as the only way of invok-
ing domain functionality is via the UL Often, the only resort
in these cases is to simulate a user programmatically, which
is expensive and brittle.

MVC programs need to keep the view current when the
state of the model changes. To that end, models typically
implement a variation of the observer pattern [15]: The model
maintains a list of “dependents”, objects that it notifies on
changes by calling an update method on them. (The con-
troller is tightly coupled to the view, and its role is unimpor-
tant for this discussion.) As the update method informs the
view of state changes, this approach is inherently impera-
tive. MVC has nice modularity properties, as each part of the
model only needs to be coupled to “its” part of the view, and
composition is easy. It also creates challenges to software
architects:

Update Keeping the view current with respect to the
model involves two tasks: initially constructing the
view by creating the various Ul widgets, and later
mutating the view upon calls to update. Conceptually,
the result of updating the view should be the same
as re-constructing the view, but the concrete code for
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both is quite different, implementing the same logic
twice.

Modularity To achieve modularity, architects should be
able to split a large, complex view into loosely cou-
pled subviews. This raises the question of how big
those subviews should be. Making them large and cor-
respondingly represent a larger chunk of the model
simplifies the change logic, as it requires fewer im-
plementations of update. However it also increases
coupling between model and view. It also causes po-
tential performance issues when a change is only to a
small part of the model and only needs a small part of
the view to change: In that case, update either spends
time drilling down to this small part of the view or
changing larger parts of the view than necessary.

Circularity The view typically includes interactive el-
ements that cause changes in the model. Naively im-
plemented, these changes indirectly trigger calls to
update in the view, which again might spill over into
changes to the model, causing a cyclic call chain.

Consider the following practical example: Figure 1 shows
object-oriented pseudocode for a weather model that con-
tains air pressure and temperature, each with its own encap-
sulated state. Figure 2 shows skeleton code for a view that dis-
plays both in text fields. The code demonstrates the modular-
ity of the approach, asPressureView and TemperatureView
each subscribe to their respective models, with no coordina-
tion required from WeatherView.

The example also illustrates the first two challenges: The
code for constructing the string representing the pressure
and temperature is duplicated between the code that con-
structs the text field and the code that updates it. Some code
can be abstracted, but the fundamental Update challenge re-
mains. The code contains two sub-views, updated separately,
addressing the Modularity challenge. Alternatively, the sub-
scription and update could happen between WeatherView
and Weather, reducing modularity somewhat but also reduc-
ing the amount of code required.

The views are missing code to unsubscribe them from
their respective models—this would further complicate the
interaction between model and view.

Figure 3 shows a different view, just on the temperature,
but with two sub-views showing the temperature with dif-
ferent units. The code also adds the element of interactivity:
When the user interacts with the view, the two observers
attached to the views update the model. This demonstrates
the Circularity challenge described above: There is now an
update loop between the model and the two views: Each
update to the model updates the view, which updates the
model, and so on. The code could break the loop by checking
whether the new value is different from the old, but this is
brittle—especially as floating-point rounding is involved in
the conversion between the three units.
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class Weather(field pressure: Pressure,
field temperature: Temperature)

{ ...}
interface Observer {

method update(info)
1
class Model {

var observers: List Observer

method changed(info) {
for each observer in self.observers
observer.update(info)

method subscribe(observer) {
observers += observer
3
1
class Pressure extends Model {
var hPa: double
method setHPa(newHPa: double) {
self.hPa = newHPa
self.changed(newHPa)
}
3

class Temperature extends Model {
var kelvin: double
method setKelvin(newKelvin: double) {
self.kelvin = newKelvin
self.changed(newKelvin)
3

3
Figure 1. Model for weather data

3 The Curse of the Event Loop

MVC UI toolkit also face a recurring implementation chal-
lenge: While a MVC program constructs the Ul in terms of
hierarchically organized views, it must display the Ul as a
flat panel of pixels. This means that technically users interact
with the Ul panel as a whole, and the UI toolkit must infer
the specific sub-view that is the target of the interactions.
Consider for example a button, which the user presses by
clicking with a mouse: The UI toolkit must infer from the
position of the mouse cursor the particular button view at
those coordinates, and cause its subscribers to be notified.

UI toolkits have traditionally chosen to implement this
process using an event loop, a piece of code that receives
hardware input events and calls subscriber callback of the
corresponding views. This happens repeatedly ad infinitum,
hence the “loop”. Here is pseudocode for a typical event loop:
while (true) {

var event = get_input_event()

dispatch_event(event)

}

FUNARCH ’25, October 12-18, 2025, Singapore, Singapore

class TemperatureView
(field temperatureModel: Temperature) {
var textField =
new TextField(toText(temperatureModel.kelvin)
+ "K"™)

temperatureModel . subscribe(self)

method update(newKelvin) {
textField.setText(toText(newKelvin) + "K")
3
}

class PressureView
(field pressureModel: Pressure) {
var textField =
new TextField(toText(pressureModel.hPa)
+ "hPa")

pressureModel.subscribe(self)

method update(newHPa) {
textField.setText(toText(newHPa) + "hPa")
}
3
class WeatherView(field weatherModel: Weather) {
var temperatureView =
new TemperatureView(weatherModel.temperature)
var pressureView =
new PressureView(weatherModel.pressure)

Figure 2. View for weather data

For this to work, the update methods of the view subscribers
must not block, as this would prevent further user interac-
tion. If an update method needs to perform I/O or other
blocking operations, this restriction effectively inverts the
flow of control: The method must start the operation asyn-
chronously and register it with the event loop, to be notified
when the operation has completed, which is often awkward.

In principle, UI programs could also just start threads that
perform blocking operations synchronously, but interact
with the Ul asynchronously. However, many Ul toolkits insist
on their functions being called from the thread the UI toolkit
runs in, further complicating matters.

Thus, typical MVC UI toolkits couple the control flow
of the central event loop to the control flow of the sub-
scriber callbacks, which includes the code that manipulates
the model. The restrictions resulting from this coupling often
force developers to write these callbacks and their dependen-
cies in such a way that their arrangement in the code does
not follow the actual sequence of events at run time, creating
a style of programming colloquially known as callback hell.
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class TemperatureView?2
(field temperatureModel: Temperature) {
var celsiusView =
new TextField
(toText(kToC(temperatureModel.kelvin)))
var fahrenheitView =
new TextField
(toText(kToF (temperatureModel.kelvin)))

temperatureModel. subscribe(new Observer {
method update(newKelvin) {
celsiusView.setText(toText(kToC(newKelvin)))
3
b))

temperatureModel . subscribe(new Observer {
method update(newKelvin) {

fahrenheitView.setText(toText(kToC(newKelvin)))

}
b))
celsiusView.subscribe(new Observer {
method update(...) {
temperatureModel . setKelvin(cToK(...))
}
b))
fahrenheitView.subscribe(new Observer {
method update(...) {
temperatureModel.setKelvin(fToK(...))
}
1))

Figure 3. Two different sub-views on the same model

4 Functional Ul Toolkits: The Early Days

This section briefly describes some early UI toolkits for func-
tional languages. We focus on toolkits that rely on pure
functions to implement the UL and omit those that basically
provide bindings for underlying C/C++ libraries and thus
inherit its imperative MVC pattern. We also omit UI toolkits
that only cover certain kinds of applications, like Eros [11]
which is for Uls that construct values.

4.1 eXene

The eXene [16] toolkit was developed as part of the Concur-
rent ML project [22] (CML). eXene uses Concurrent ML to
solve the event-loop problem described in Section 3. In eXene,
the global event loop is relegated to the background in favor
of individual event loops running in threads, each associated
with a particular UI widget. Rather than calling subscriber
methods directly, the global event loop sends asynchronous
messages to the widget event loops, decoupling them. De-
velopers are afforded great flexibility in orchestrating their
actions through CML’s event combinators.
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While CML and eXene originated in the context of func-
tional programming, the overall approach of Ul manipulation
in eXene remains firmly imperative. Thus, eXene inherits
the Update challenge from Section 2.

4.2 Fudgets

While eXene’s Standard ML is (also) an imperative language,
Haskell’s lazy evaluation makes just adding functions that
“do stuff” impractical. Consequently, interacting with the
outside world was a challenge for the designers of Haskell
during its nascency in the 1990s. This also affects the design-
ers of Ul libraries. A notable early attempt to do this was the
Fudgets toolkit [5]. (Fudgets is still being maintained.)

Fudgets represents a Ul component (a fudget) as a stream
processor of type F a b that transforms a stream of input
values of type a into output values of type b. Fudgets can be
combined into sums and products, building UI structure and
reactivity in a hierarchical fashion. Fudgets completely ab-
stracts the event-loop paradigm away from the user program,
which consists exclusively of pure functions.

Most Uls need to have dynamic structure—for example,
when displaying a list of UI items that supports adding and
removing elements. Fudgets addresses this by combinators
that accept special command values describing mutations of
the UI structure, effectively sneaking in imperative elements
in its otherwise pure model. Thus, Fudgets also partially
inherits the Update challenge from Section 2.

4.3 Fruit

Fruit [7] re-imagines the basic idea of Fudgets on top of the
idea of Functional-Reactive Programming [10], which had
been developed in the meantime. Fruit retains the purity and
compositionality of Fudgets, replacing the stream proces-
sors of Fudgets with FRP signal transformers. There are two
notable differences between Fudget and Fruit, however:

e Fudgets widgets have implicit access to interactive
events, while Fruit requires them to be threaded ex-
plicitly through the program. This means that a Fruit
program is coupled to all aspects of the “outside world”
it interacts with, making it difficult to add interactions
(such as file or network I/O) after the fact.

e Another difference concerns dynamic Ul components:
Whereas Fudgets views display the values coming from
a stream (and are thus “outside” those streams), Fruit
has the views themselves be the values of the FRP
signals, and dynamic structure can be expressed by
just having new values return a different view.

Thus, Fruit avoids the Update challenge from Section 2, but
comes with its own modularity problem. The Yampa frame-
work [20] builds on similar ideas, but represents reactivity
on monadic stream functions that are parameterized over a
monad, effectively re-introducing imperative programming
to the paradigm.
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4.4 Haggis

Haggis was a short-lived Ul toolkit for GHC [13], which took
a middle path between eXene and Fudgets: While Fudgets
provides a purely functional UI for constructing widgets
via explicit combinators, Haggis provides an imperative Ul
running in the I0 monad for this construction. Haggis deals
with the event loop similarly to eXene, replacing Concurrent
ML with Concurrent Haskell. For the reactive part of a Ul
widget, Haggis provides a handle separate from the view part.
The program can wait for interaction on these handles also in
the I0 monad (in separate threads if that is convenient), and
allows combining them in a way similar to CML events. Thus,
Haggis also inherits the Update challenge from Section 2.

5 The Racket Universe Teachpack

Teachers of introductory programming courses would often
like to enable their students to write interactive programs.
The complexity of Ul toolkits have traditionally made this
difficult, at least in the era of toolkits described in the pre-
vious section. Since 2003, the Racket system has come with
a library called the Universe teachpack for an introductory
course [12] that allows writing distributed, interactive video
games in a purely functional manner. We focus here on the
“world” part of the Universe teachpack, i.e. video games with-
out distribution.

The Universe teachpack is basically “half” a UI toolkit. It
is an interesting subject for study, as it does address the per-
nicious Update challenge of the UI toolkits described above.
To implement such a video game, the developer only has to
implement a small number of pure functions, all of which
operate on a model represented by a single value of type
WorldsSt, which is entirely under the control of the program:

on-draw : WorldSt — Image

on-tick : WorldSt — WorldSt

on-key : WorldSt KeyEvt — WorldSt

on-mouse : WorldSt Nat Nat MouseEvt — WorldSt

These functions are all callbacks for the Universe teachpack,
programs contains no explicit calls to them. The on-draw
function handles view construction and uses Racket’s image
teachpack to build a single frame of the video game. (The
image teachpack is a combinator library in the style of Hen-
derson’s functional geometry [18].) There is no separate
function for view update: Whenever the model transitions
to a new state, the Universe teachpack simply calls on-draw
again and redraws the entire frame. This is fast enough in
practice to achieve reasonably fluid animation.

The other functions provide reactivity to different kinds
of events: All of them take a WorldSt state as input and
output a new state, which the teachpack feeds into on-draw.
On-tick is called on every clock tick to provide movement.
On-key is called on key presses, and on-mouse on mouse
events. Writing these functions is well within the purview
of introductory-course students.

FUNARCH ’25, October 12-18, 2025, Singapore, Singapore

Html

view

Ul program

update CI:?;

Msg

Figure 4. The Model-View-Update pattern

Consequently, the Universe teachpack uses a “brute-force”
approach to the view-update problem: Use a single mono-
lithic value for the model state, and redraw everything every
time the model moves to a new state. This means no separate
view-update code—Update challenge solved.

Unfortunately, this approach also abandons the good mod-
ularity properties of object-oriented MVC toolkits: From the
point of view of the UI toolkit, the model state is a single
value, and there is no simple way to split it—and to split the
corresponding view elements into sub-views. Thus, the Uni-
verse teachpack does not address the Modularity challenge
from Section 2. This is not a problem in practice, as the video
games implemented in a class are simple enough that unified
state is appropriate. However, it does prevent easily scaling
the approach to realistic Uls in a modular fashion.

6 The Evolution of Elm and React

Elm [9] is a UI toolkit and companion Haskell-like language
that translates to JavaScript and thus allows implementing
web applications. Elm is in production use in open-source
and commercial projects. Elm’s initial release in 2012 was
based on FRP Signals, and was similar to Fruit. Elm eventually
evolved to a different approach, leaving its FRP legacy behind
in 2016 [8]. This approach gives rise to an alternative Ul
pattern called Model-View-Update. An EIm program mostly
consists of only two pure functions operating on values of a
type Model, defined by the UI program:

view : Model -> Html Msg
update : Msg -> Model -> (Model, Cmd Msg)

Figure 4 illustrates the pattern. The view function constructs
the UI represented as a HTML tree. Each interactive Ul
widget carries a message of the Msg type (also defined by the
Ul program) that is generated when the user interacts with
the widget. The Elm toolkit then passes this message to the
update function that generates a new model, which again
gets fed into view and so on.

The Cmd type allows triggering impure actions outside
of user interactions. In particular, a program performs net-
work requests by issuing commands, which get executed
asynchronously and result in incoming messages, thus ame-
liorating issues with JavaScript’s inherent event loop.
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View-Model-Update is simple and easy to learn, and does
not require the developer to know higher-level abstractions
like signals, stream transformers or monads. It also avoids
the circular dependency between view and model.

Model-View-Update is quite similar to Racket’s Universe
teachpack: The view is re-constructed after every user inter-
action, and it uses a single, monolithic value for the model
state. The possible messages belong to a single central type.
Consequently, Elm also inherits the Universe teachpack’s
architectural trade-offs: It solves the Update challenge from
Section 2, but has no notion of an independent, composable
“UI component” and thus faces the Modularity challenge.

Shortly after Elm’s initial release, Facebook released their
web UI toolkit React, which was also based on a variation of
the Model-View-Update paradigm. React’s render function
corresponds to Elm’s view: It transforms the model state
into a HTML tree. Unlike Elm, React has a notion of a Ul
component—a sub-view with its own associated state.

Where Elm gives the Ul program complete freedom in the
choice of Model type, React differentiates two kinds of state:
Immutable properties flow downward in the sub-view tree—
the property of a sub-view needs to be extractable purely
from the property of its parent. Properties face the Modular-
ity challenge. Each component also has its own associated
mutable state, which needs to be a JavaScript hash map.

Thus, React’s model of reactivity is different from Elm’s:
The UI program attaches imperative callbacks to UI compo-
nents, and these callbacks can either mutate the component
state or cause the properties to be replaced. Conceptually,
React ignores the difference between these two methods and
re-renders the entire Ul on each interaction, just like Elm.

Both React and Elm leave solving the Modularity chal-
lenge to the developers, and the communities of both have
produced patterns to alleviate the problem.

Elm and React and the Model-View-Update pattern repre-
sented an erstwhile peak in the evolution of functional APIs,
intellectually hailing from Fudgets and Fruit. Consequently,
we take Model-View-Update as the starting point for the
further discussion.

7 Ul Toolkits Elsewhere

Evolution did not just happen in functional approaches to Ul
programming. Object-oriented UI toolkits have also evolved,
specifically those for web applications. Modern OO toolk-
its like Angular, Svelte, and Vue.js have also attempted to
solve the Update challenge from Section 2 using a common
approach (also available with React).

These toolkits rely on the same underlying architecture
as the original MVC pattern and require the program to
construct the Ul initially and update specific parts of the
UI corresponding to specific changes in the model. This
way, they avoid the overhead of Model-View-Update from
(conceptually) re-constructing the Ul on every change.
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However, instead of requiring the programmer to imple-
ment the update logic manually, these toolkits feature a pre-
processor that generates the update code automatically from
the construction code. This convenience comes at a price,
as these toolkits require the code changing the state to be
exposed to the UI toolkit, and for that code to use conven-
tions recognizable to the pre-processor. This means that
the model cannot be implemented independently of the Ul
toolkit, and is thus coupled to the view—effectively giving
up the Model/View separation, the central tenet of MVC.

8 Functional Modularity Challenges

Taking Flm’s and React’s Model-View-Update pattern as
a starting point, we summarize the architectural tradeoffs
listed in Section 2:

e Model-View-Update solves the Update challenge: A
single function describes view construction, no sepa-
rate logic for view update is needed.

e The Modularity challenge—implementing modular sub-
views—remains: A functional Elm/React application
manages its model state as a single mutable reference
at the top level, with everything below managed func-
tionally.

e Model-View-Update also solves the Circularity chal-
lenge, as the cyclic call chain is broken by the succes-
sion of models and updates presented to the UI toolkit.

Solving the Modularity challenge in the context of functional
programming means establishing a notion of “UI component”
without resorting to imperative state updates. A solution
approach needs to address the facets described in this section:
Updating the model state in a modular fashion, dealing with
Ul-local state, and breaking up global dispatch.

We illustrate these facets using a simple example: an ap-
plication that manages phone-book entries with name and
phone number. The application manages the phonebook in
a functional manner, as a functional list of immutable entry
records. Its Ul contains a sub-view component that allows
viewing and editing a single name within a text field, along
with a “Submit” button for actually changing the phonebook.

8.1 Global Model State Update

When the user changes the name, this is a local change from
the point of view of the UI component, but the application
must update its global phonebook reference. Thus, updating
the state is not the job of the name UI component but of
all the components above it in the hierarchy that need to
re-construct the state with the one changed name, and finally
change the global reference at the top.

8.2 Ul-Local State

The model-state update happens when the user clicks the
“Submit” button. However, the Ul has to manage the contents
of the text field as the user types in the new name one letter
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at a time. This intermediate state is of no interest to the
model, hence it is “Ul-local” and not an aspect of the model.
Thus, the UI toolkit should enable separating the model state
from the Ul-local state.

Note that the distinction between model state and UlI-
local state depends on context and judgement: The name
UI component itself has two sub-components, a text field
and the submit button. The text field’s model will usually
be the visible text. However, embedded within the name
component, the text field’s model state becomes the name
component’s Ul-local state.

8.3 Global Dispatch

In Elm, the UI program communicates requests to change
the model state (as well as other side effects) via messages
of type Msg, which the toolkit subsequently passes to the
update function. This update function is global, and thus
unmodular. Making the global dispatch modular requires
associating it with an individual UI component rather than
the program as a whole.

However, a Ul component is often not able to handle the
messages generated by user interaction with its view. Con-
sider again the name UI component: The name should prob-
ably not be empty, and thus the “Submit” should be deacti-
vated as long as the text field is empty. Thus, the text-field
component must pass a message upwards to its enclosing
name component, informing it of the state change. Corre-
spondingly, the enclosing component must be able to handle
the message coming up from its sub-component.

Furthermore, the type of the message produced by the sub-
component must match the type expected by the enclosing
component. This is not necessarily the case when the two
are developed separately: For this case, the Ul toolkit must
offer a mechanism to transform the message along the way
from its producer to its handler.

9 From Model-View-Update to Reacl

As a response to challenges described in the previous sec-
tion, we started in 2014 to work on our own UI toolkit for
ClojureScript, Reacl [1]. Reacl is similar to Halogen, a Ul
toolkit for PureScript [17], even though both were developed
independently. This section describes how Reacl tackles the
modularity challenges, using the phonebook example. Reacl
evolved significantly over its lifetime, eventually leading to
its successor reacl-c described in Section 11. We describe
Reacl version 2 from about 2019.

The phonebook example starts with a namespace decla-
ration that imports both Reacl and the record library from
Active Data [3], a library for making data modeling explicit:

(ns phonebook
(:require
[reacl2.core :as reacl :include-macros truel]
[reacl2.dom :as dom :include-macros true]
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[active.data.record :as record
:include-macros true
:refer-macros (def-record)]

[active.data.realm :as realm]))

We use Active Data to define a record type for an entry in
the phonebook, the central aspect of the model:

(def-record entry
[entry-name :- realm/string
entry-phone-number :- realm/stringl)

In this declaration, entry is both the record type and con-
structor, entry-name, entry-phone-number each double as
field name and getter/selector. The realm/ annotations de-
clare the run-time types of the fields of the record.

We now construct a Ul for editing the name of an entry. To
that end, we start with a reusable component for an editable
text field. This is implemented via a class in Reacl that defines
how the text-field components are rendered and behave:

(def-record change-text
[change-text-text :- realm/stringl)

(reacl/defclass text-field this text []
render
(dom/input {:onchange
(fn [e]
(reacl/send-message!
this
(change-text
change-text-text
(.. e -target -value))))
:value text})
handle-message
(fn [msg]
(cond
(record/is-a? change-text msg)
(reacl/return
:app-state (change-text-text msg)))))

In this declaration, this is the name that the code can use
to refer to the current component (similar to this in Java),
and text is the app state of the component—its model.
Two clauses follow, the first of which is render, which
generates the view from the app state text. This is straight-
forward HTML with a callback attached that fires whenever
the user changes the text. The callback sends a message to
the component that describes the user’s intention, in this
case to change the text in the form of a change-text record.
Components can send messages to arbitrary other com-
ponents, but it is typical to send them “to themselves,” as is
shown here. The handle-message clause defines how a com-
ponent reacts to a message it receives. In this case, the only
possible message is a change-text record, but often com-
ponents allow for more than one kind of interaction, which
is why there is a cond here that identifies the change-text
record. The function then calls reacl/return, which tells
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Reacl what to do—in this case replace the app state of the
component with the text from the message, performing an
update as in the Model-View-Update pattern.!

In principle, the callback attached to the text field could
itself perform the update—first creating and then dispatching
on a message is more work. However, this separation of
concerns makes the handle-message function testable, even
outside of the running UI application. (The render function
is also testable by inspecting the returned HTML, but this
comes with caveats described in Section 10.)

Next, we create a Ul component for actually editing a
name from a phonebook. The idea is that the phonebook will
only be changed when the user clicks on a Submit button.
Consequently, the app state of the name component will only
change when Submit is pressed. However, the component
still needs to keep track of current content of the text field.
To that end, it keeps a local state, which is not reflected in
the model state. The class starts like this:

(reacl/defclass text-editor
this text []
local-state [current-text text]

Here, text is the app state of the component. The local state
is called current-name and its initial value upon creation
of the component is text. Here is the render clause, which
creates an HTML form:

render
(dom/form
{:onsubmit
(fn [e] (.preventDefault e)
(reacl/send-message! this (submit)))}
(dom/div (text-field
(reacl/opt
:reaction
(reacl/reaction
this
(fn [text]
(change-text
change-text-text text))))
current-text)
(dom/button "Submit")))

This calls text-field to create a text-field component, pass-
ing it a reaction and current-text as its app state. (This
shows that one component’s app state can be another compo-
nent’s local state.) The reaction defines how the text-editor
component reacts to changes in the text-field compo-
nent’s app state (passed in as text to the function), typ-
ically by sending a message. Here, the reaction sends a
change-text message (re-used from text-field) to this.

The form callback, which gets called when the user clicks
Submit, sends a singleton submit message as per this record
declaration:

ISince the development of Reacl, React has adopted a similar mechanism to
handle-message called reducers.
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(def-record submit [])

(The .preventDefault DOM call is just a technical neces-
sity.)

Finally, the handle-message function dispatches on the
two messages, updating the local state for change-name and
the app state for submit:

handle-message
(fn [msg]
(cond
(record/is-a? change-name msg)
(reacl/return
:local-state (change-name-text msg))
(record/is-a? submit msg)
(reacl/return :app-state current-name))))

This example shows how Reacl deals with the three chal-
lenges described in Section 8:

Global Model State Update A handle-message func-
tion only describes how to update its own model/app
state, with no knowledge of and therefore no coupling
to the global state of the application.

Ul-Local State The local-state mechanism keeps lo-
cal state out of the model.

Global Dispatch The handle-message function is per
component class, no global dispatch is necessary.

It should be noted that Reacl also has a mechanism not de-
scribed here for side effects external to the Ul component
such as network communication. In order to make the core
of the Ul application pure, it creates an action, which is simi-
lar to a message with the difference that it does not specify a
receiver but gets propagated upwards in the tree formed by
the components until a component either handles it or trans-
forms it into an action understood further up. This achieves
modularity for actions in a way similar to reactions.

10 Inherently Vague Semantics

User interface construction remains a struggle. In addition
to the challenges described above, UI programming—and
testing—is difficult for reasons beyond the grasp of UI tools.
Model-View-Update should make UI tests easy: Run the
view function for a sample state of your domain logic and
compare the resulting graphical display (view state) to
your desired version. Even forgetting about the dynamic
nature of Uls for a moment, this approach rarely results in
good tests. Take this temperature display in pseudocode:

(defn view [temp]
(dom/div
{:style (if (too-hot? temp)
"background: red;" "")}
(temperature->string temp))
(assert-equal (view 22) (dom/div "22")
(assert-equal (view 183)
(dom/div {:style "background: red;"} "183"))



Evolution of Functional Ul Paradigms

This trivial test is problematic if we want to emphasize not
with a red background but a border. Our test demands that
the background be red. To make the change, we have to adapt
both our implementation and our test.

A good test checks whether an implementation satisfies a
given specification. Howeber, the specification of a UI com-
ponents is hard to separate from its implementation. In this
case, we want to ensure “emphasis”, which is hard to for-
malize. Moreover, users’ habits and expectations change: An
emphasis today might have been overlooked ten years ago.
Additionally, context is important. A graphical representa-
tion that is emphatic when surrounded by white space may
appears too timid surrounded by loud advertisements.

Lehman’s SPE classification [6] distinguishes programs
depending on how well specified and specifiable they are. S
is for “programs whose function is formally defined by and
derivable from a specification”, P is for programs that have
a formal specification, but “the acceptability of a solution is
determined by the environment in which it is embedded”,
and E is for “programs that mechanize a human or societal
activity”. Classes P and E are further aggregated to form class
A—programs “that represent a computer application in the
real world”. The distinction between S and A programs aligns
with our distinction between software aspects that have a
precise formal semantics and vague aspects like emphasis. S
programs are amenable to automated tests or even formal
verification. A programs on the other hand require manual
tests to verify their correctness.

While most UI software falls into the A class in its entirety,
large software is made from smaller parts, which in turn
can be classified as either S or A. In the temperature display
example above, emphasis is the problematic aspect in terms
of precise formal specification—an A aspect. In contrast, the
function tooHot solely operates in terms of the core domain
logic, and is independent of its context or any human habits
or practices—it belongs to class S.

This S/A separation also applies to Reacl’s separation be-
tween a Ul widget’s event handler, the representation of the
user’s intention, and its dispatch in the handle-message
function. All fall squarely within class A, which makes the
separation less valuable than it might seem from a purely
architectural perspective.

In order to bring down the costs of tests, we have to strive
for a separation of S software parts from A software parts,
and thus we want to write as little UI code as possible. In
the remainder of this work we propose a discipline that
supports this goal: we introduce reacl-c, a Ul combinator
library that is optimized for reusability and we make a case
for the functional view model, a Ul programming pattern.

11 From Reacl to reacl-c

Reacl allows for many different styles of component com-
position, which makes it hard to write widely applicable
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reusable abstractions. Over the years, patterns for Reacl com-
ponents emerged, eventually leading to the creation of the
reacl-c library [2]. The differences between Reacl and reacl-
¢ focus on the relationship between components, and at
what time the relationship is defined. Consider the call to
text-field in the phonebook example: The reaction is part
of the text-editor class, and thus effectively has to be the
same for all components of that class—it’s decided statically.

A developer might want to defer the decision on the reac-
tion until run time, maybe because they want to use a compo-
nent combinator that has to operate on state as well. In that
case, they have to write a function that takes the reacl/opt
value and current-name as arguments and build a combi-
nator that works on these component constructor functions
(instead of working on components), which is awkwardly
indirect. To that end, reacl-c does away with the separation
between classes and their components.

Another pattern that emerged from experience with Reacl
is the relationship between parent and child, which is often
best described by a lens [14]: A child component is often
responsible for part of its parent’s state. That means that the
data flow from parent to child works like the GET operation
of a suitable lens and the data flow from child to parent
corresponds to the PUTBACK operation.

11.1 User-Interface Combinators

reacl-c inherits the Model-View-Update paradigm from Reacl.
State is kept local to each item. The relationship between the
states of two different items is mostly expressed with lenses.
reacl-c’s small set of flexible combinators allows developers
to express abstractions that increase reuse and help sharply
delineate the distinction of S and A code.

The unit of composition in reacl-c is called item. All reacl-c
items have a notion of state, items may have a visual appear-
ance, items may issue actions and messages, and items may
perform controlled effects. For this overview it suffices to fo-
cus on (DOM) visuals and state. An item has the (imaginary)
type Item state, where state is the type of the item’s state.

Strings are primitive, state-agnostic items that simply dis-
play as themselves:

"Hello"

The div DOM combinator combines multiple items into one
and allow adding additional styling. Given two items i and
j of type I'tem s, the new item
(div {:style {:border "1px solid blue"}}

ij) : Items

. forall s. Item s

displays i and j side-by-side (or on top of each other, depend-
ing on circumstances outside of the scope of this discussion)
and draws a blue border around them. Optionally, these
DOM combinators take special arguments that allow users
to update state. The item

(button
{:onClick (fn [x] (+ x 1))} "Inc") : Item Int
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displays a button with the label “Inc” that increments its
state when the user clicks. The handler function argument
takes the current state as its first argument and returns a
new state value for the next logical UI cycle.

focus is an item combinator that takes an item that op-
erates on state of type s and a lens between types s and t
and returns a new item that operates on type t. Given the
increment button above as incButton, we can build a GUI
for a tuple of two integers by combining focus and div:
(div

(focus lens/first incBut)

(focus lens/second incBut)) : Item (Int, Int)
All items above only update state but never display it. That’s
where the dynamic item constructor comes into play:
forall s.(s -> Item s) -> Item s
This takes a function that gets the current state of type s
and produces an item with that same state type. We can
use dynamic to build an increment button that displays the
current value as its label:

dynamic :

(c/dynamic

(fn [i]

(button {:onClick (fn [x] (+ x 1)} (str i)))))
The item combinator
forall s t.t -> Item t -> Item s

takes an initial value of type t and an item of type Item t and
“runs” the item with the given initial state value. The resulting
item can be used in any state context. This detaches an item’s
state from its surrounding state. A less drastic combinator is

: forall s t.t -> Item (s, t) -> Items

which takes an initial value of type t and an item that op-
erates on state of type (s, t). The result is an item that
operates on state of type s. From the perspective of the par-
ent item, local-state introduces the right part of the state
tuple to form the child’s state. When viewed from the per-
spective of the child item, local-state hides the right part
of the state tuple from the parent.

These combinators (along with a handful of others) enable
programming techniques from pure functional programming
to be carried over to GUI construction.

isolate-state :

local-state

11.2 Phonebooks Redux

To further illustrate reacl-c, we re-use the phonebook domain
model from section 11. We import the reacl-c namespaces
along with active.data and active.clojure.
(ns phonebook
(:require
[reacl-c.core :as c¢ :include-macros true]
[reacl-c.dom :as dom :include-macros true]
[reacl-c.main :as cmain]
[active.clojure.lens :as lens]
[active.data.record :refer-macros [def-record]]
[active.data.realm :as realm]))
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For our phonebook GUI we need a text-field, which we can
build with a combination of c¢/dynamic and dom/input.

(def text-field
(c/dynamic
(fn [text]
(dom/input
{:value text
:onChange (fn [old-text event]
(.-value (.-target event)))}))))

As shown above the :onChange handler describes how to
update the current state. Here we see how reacl-c integrates
with the native DOM bedrock of the browser: The : onChange
handler takes a native DOM event object as an optional
second parameter that contains the desired result text.

We can build a text editor with a Submit button, similar
to the Reacl version above with the help of local-state.
Here we can reuse text-field unmodified.

(def text-editor
(c/dynamic
(fn [text]
(c/local-state
text
(dom/form
{:onSubmit
(fn [[outer-text current-text] event]
(.preventDefault event)
[current-text current-text])}
(c/focus lens/second text-field)
(dom/button {:type "submit"} "Submit"))))))

The local-state function pairs local state current-text
with the item’s state, called outer-text in the submit call-
back. (Thus, differently from Reacl, the local state becomes
part of the state rather than being bound to a separate vari-
able.) The call to focus that embeds text-field focusses
the text-field component on that local state.

John Doe ‘ [ Submit }

Many relationships between different parts of GUI appli-
cations can be expressed as lenses, so the focus combina-
tor makes for powerful glue. (Record field names defined
by def-record from active.data.record are also lenses.)
The following example shows a small Ul that manages a
single entry in our phonebook application.

(def entry-item
(dom/div "Name:" (c/focus entry-name text-editor)
"Tel:" (c/focus entry-phone-number
text-editor)))

Name:’ John Doe ‘ E Submit ]

Tel: | 0123 | [ submit |
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We can evolve this single phonebook entry to an item that
manages an entire phonebook (a sequence of entries) by
using focus with a lens:

(def phonebook
(c/dynamic
(fn [entries]
(apply
dom/div
(map (fn [idx]
(c/focus (lens/at-index idx)
entry-item))
(range (count entries)))))))

Here we map over the indices of the entries in the phonebook
and use (c/focus (lens/at-index idx) ...) to focus
on the entry item for each phonebook entry. This pattern is
very common when dealing with lists, and we can distill it
into a custom combinator:

(defn map-item [child-item]
(c/dynamic
(fn [xs]
(apply
dom/div
(map (fn [idx]
(c/focus (lens/at-index idx)
child-item))
(range (count xs)))))))
(def phonebook-2 (map-item entry))

In contrast to Reacl components, items such as child-item
are not wired to any other Ul widgets, so the map-item
combinator can use focus to establish a connection between
its state and child-item’s state. Here, we add a button that
inserts a new entry into the phonebook, which works with
the entire phonebook state.

(def empty-entry
(entry entry-name entry-phone-number ""))
(def phonebook-with-add-button
(dom/div
phonebook-2
(dom/button
{:onClick
(fn [phonebook _] (conj phonebook empty-entry))?}
"Add new")))

Name: ’ John Doe ‘

nn

Tel: ] 0123 ‘

Name: ’ Jane Doe ‘

Tel: ’ 4567 ‘
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12 The View Model, Functionally

In the phonebook application above, when a user clicks the
“Add new” button, the application inserts a new entry below
the others. The user can then click on the name input field
and enter the new entry’s name. The newly inserted widget
looks like any other list item, however. In order to give the
user explicit feedback as to what happened on screen, we
now want to highlight newly inserted entries. As we argued
in Section 10, it is hard to formally specify what it means ex-
actly for a Ul widget to be emphasized. We should still extract
the notion of emphasis into an isolated item combinator:

(defn emphasize [item]
(dom/div {:style {:border "1px solid blue"}}
item))

So far the domain model and the state of our items have been
the same. Now we also have to keep track of which entry to
emphasize. We therefore separate our domain model from
the model of our Ul state. This is a pattern well-known in the
OO0 community as “Model-View-ViewModel” (MVVM) [23].
Our view model includes a phonebook entry from the core
domain model, enriched with the information whether this
particular entry should be emphasized. A phonebook view
model consists of a sequence of such entries.

(def-record entry-vm
[entry-vm-entry :- entry
entry-vm-emphasized? :- realm/boolean])
It probably doesn’t make sense to have more than one entry
with entry-vm-emphasized? set to true. We provide a set
of smart constructors and accessors that keep the constraint
satisfied. First, we need an empty phonebook:

(def empty-phonebook [1])

In our minimal phonebook example the only way to build
larger phone books is to use an add-new-entry function:

(defn deemphasize [entry]

(entry-vm-emphasized? entry false))
(defn add-new-entry [entries]

(conj (mapv deemphasize entries)

(entry-vm entry-vm-entry empty-entry
entry-vm-emphasized? true)))
add-new-entry is a pure function with precise semantics
and thus a perfect candidate for testing,.

These definitions constitute our view model. The corre-
sponding UI code is straightforward. The new entry item
entry-item-2 handles emphasis conditionally and then del-
egates on to the entry-item defined above.

(def entry-item-2
(c/dynamic
(fn [entry-vm]
((if (entry-vm-emphasized? entry-vm)
emphasize identity)
(c/focus entry-vm-entry entry-item)))))
(def phonebook-item-2 (map-item entry-item-2))
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The phonebook still needs an “Add new” button. This button
now simply calls add-new-entry:

(def phonebook-with-add-button-item-2
(dom/div phonebook-item-2
(dom/button {:onClick add-new-entry}
"Add new")))

The view-model pattern enabled by reacl-c allows moving
part of the UI into S realm of the SPE classification. This
yields the important architectural benefits of the Reacl model:
no separate update code, modular components, no circular
callbacks. Separating out the view model further enables
testability in the parts of the UI code where it makes sense,
and minimizes the amount of code where it does not.

13 Conclusion

UI programming and the architecture of Ul program have
evolved significantly since the MVC pattern, but the basic
tenets of MVC are still in place. Object-oriented and func-
tional approaches have had complementary trade-offs: Pure
MVC featured good modularity from the start, but has strug-
gled with keeping the view current with respect to the view.
Conversely, the functional Model-View-Update pattern in its
pure form solves the update problem but struggles with mod-
ularity. We have described the Reacl and reacl-c UI toolkits
that address the modularity issues with Model-View-Update,
and shown how to enhance Model-View-Update with func-
tional view models to further modularize UI programs.
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