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Abstract

Two key steps in the compilation of strict functional languages are
the conversion of higher-order functions to data structures (clo-
sures) and the transformation to tail-recursive style. We show how
to perform both steps at once by applying first-order offline partial
evaluation to a suitable interpreter. The resulting code is easy to
transliterate to low-level C or native code. We have implemented
the compilation to C; it yields a performance comparable to that of
other modern Scheme-to-C compilers. In addition, we have inte-
grated various optimizations such as constant propagation, higher-
order removal, and arity raising simply by modifying the under-
lying interpreter. Purely first-order methods suffice to achieve the
transformations. Our approach is an instance of semantics-directed
compiler generation.

Keywords semantics-directed compiler generation, partial evalua-
tion, compilation of higher-order functional languages

Partial evaluation is an automatic program transformation that
performs aggressive constant propagation [28, 18]. When applied
to an interpreter with respect to a constant (“static”) input pro-
gram for the interpreter, partial evaluation performs compilation
into the target language of the partial evaluator. Naive interpreters
subjected to offline partial evaluation usually produce straightfor-
ward compiled code. Moreover, if the input language of the inter-
preter, and the input and output languages of the partial evaluator
are identical—that is, if it is a self-interpreter—the compilation is
essentially the identity function.

However, if the interpreter uses only a subset of the subject lan-
guage, so do the compiled programs. In addition, after changing the
interpreter to propagate more information statically, the produced
compiler performs optimization. The generation of optimizing pro-
gram transformers by partial evaluation is called theinterpretive
approach[24]. It has been applied to a wide range of problems:
to the generation of optimizing specializers, supercompilers, and
deforesters [24, 25]—albeit in the context of first-order languages.

We show that the interpretive approach can achieve optimizing
compilation of a strict, higher-order functional language. Our com-
pilation system consists of two parts: an optimizing transformer,
which translates higher-order recursion equations into first-order
tail-recursive Scheme programs, generated automatically from a
suitable interpreter by partial evaluation, and a simple, hand-written
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translator from first-order tail-recursive Scheme into low-level C.
It is also possible to generate the back-end translator by the same
method from an interpreter, using a partial evaluator for C [2].
Hence, partial evaluation offers the development of a Scheme com-
piler for the price of writing two interpreters. The automatic con-
version to tail form is also the first solution to Jones’s 1987 chal-
lenge 11.5 [27].

The optimizing compiler performs aggressive constant propa-
gation and higher-order removal; it is a specializer in its own right.
For its generation, we exploit two principles: thespecializer pro-
jections for the generation of the transformer, and thelanguage
preservation propertyof offline partial evaluators for the transla-
tion of higher-order programs into first-order tail-recursive code.

We have generated the transformer from an interpreter using
the partial evaluator Unmix. Unmix, a descendant of the Moscow
specializer [36], dating back to 1990, treats only a first-order sub-
set of Scheme, and does not handle partially static data structures.
Since our transformer performs a much more powerful specializa-
tion on higher-order Scheme, and does handle partially static data
structures, we have achieved a bootstrapping effect.

Our work also refutes the 1991 claim of Consel and Danvy [17]
that realistic compiler generation by partial evaluation is only pos-
sible through recent advances in partial evaluation technology. We
show that neither higher-order specialization nor partially static
data structures are vital to achieve realistic compilation. A sim-
ple first-order partial evaluator suffices to do the job, even for a
higher-order subject language.

Overview We start with a small example for specialization and
translation into tail-recursive code in Sec. 1. Section 2 is a brief in-
troduction to partial evaluation. In Sec. 3 we explain the two basic
principles needed to generate stand-alone compilers by partial eval-
uation: thespecializer projectionsand thelanguage preservation
property. Section 4 shows how to turn a simple-minded recursive-
descent interpreter into a two-level interpreter from which the par-
tial evaluator produces the optimizing compiler. In Sec. 5, we de-
scribe our approach to generating C code from the compiler output
by hand, followed by a recipe on how to achieve the same effect
by using partial evaluation again. Section 6 presents experimental
results, and Sec. 7 discusses related work.

1 Examples

We illustrate the transformations that our compiler performs by ap-
plying them to a version of append written in continuation-passing
style (CPS):

(define (append x y)
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(cps-append x y (lambda (x) x)))

(define (cps-append x y c)

(if (null? x)

(c y)

(cps-append (cdr x) y

(lambda (xy)

(c (cons (car x) xy))))))

The compiler converts the program to first-order tail-recursive
Scheme. It residualizes thelambda appearing in the program, and
represents the resulting functions by closures. Closures consist of a
closure label identifying its originating expression, and the values
of their free variables. They are constructed bymake-closure and
accessed byclosure-label andclosure-freeval The closure
label10 denotes the identity,24 the inner continuation. Whenever
the program applies a closure, it dispatches on theclosure-label
component. This happens for both applications of the continuation
c, once ins1-eval-$3 for (c y) and once ins1-eval-$9 for
the other application. Note that the identifier names in the residual
program have been replaced by generic names from the interpreter.
Namely, the counterparts to the original identifiers now have the
form cv-vals-xx .

(define (append x y)

(s1-eval-$3 (make-closure 10) y x))

(define (s1-eval-$3 cv-vals-$1 cv-vals-$2 cv-vals-$3)

(if (null? cv-vals-$3)

(if (equal? 10 (closure-label cv-vals-$1))

cv-vals-$2

(do-closure-cv-bindings-$2 cv-vals-$2 cv-vals-$1))

(s1-eval-$3

(make-closure 24 cv-vals-$1 cv-vals-$3)

cv-vals-$2

(cdr cv-vals-$3))))

(define (do-closure-cv-bindings-$2 first-val closure)

(s1-eval-$9

(closure-freeval closure 1)

first-val

(closure-freeval closure 0)))

(define (s1-eval-$9 cv-vals-$1 cv-vals-$2 cv-vals-$3)

(if (equal? 10 (closure-label cv-vals-$3))

(cons (car cv-vals-$1) cv-vals-$2)

(do-closure-cv-bindings-$2

(cons (car cv-vals-$1) cv-vals-$2)

cv-vals-$3)))

When given a known first argument(foo bar), the compiler
performs specialization:

(define (append-$1 y)

(cons ’foo (cons ’bar y)))

The next step in the compilation is the translation to C. We have
omitted actual output. Section 5 describes our C back end.

2 Partial Evaluation Issues

Partial evaluation is a specialization technique: If parts of the input
of asubject programare known at compile time, a partial evaluator
generates aresidual programspecialized with respect to the static
input. The residual program only takes the remaining,dynamic
parts of the input as parameters, and produces the same results as
the subject program applied to the full input. Partial evaluation
can remove interpretive overhead and produce significant speed-
ups [28].

An offlinepartial evaluator consists of abinding-time analysis
and areducer. The binding-time analysis, applied to the subject
program and the binding times of its arguments, annotates each
expression in the program with a binding time, static or dynamic.
The reducer processes the annotated program and the static part
of the input, reducing static expressions and rebuilding dynamic
ones, driven by the annotations. Whereas simple-minded binding-
time analyses only handle the binding times “completely static”
and “completely dynamic,” more sophisticated variants also treat
partially static data[33, 32, 9, 16].

In contrast,onlinepartial evaluators [48, 38] are one-pass pro-
grams which decide “online” whether to reduce or rebuild an ex-
pression. They are generally more powerful than their offline coun-
terparts because they exploit information about actual values—rath-
er than only their binding times—to decide whether to reduce or
rebuild.

For our experiments, we use Unmix, a simple offline partial
evaluator for a first-order, purely functional subset of Scheme. Un-
mix employs classic Mix technology [29], and does not handle par-
tially static data. However, its post-processor performs arity rais-
ing [37] which is crucial to the generation of efficient residual pro-
grams in the absence of partially static data.

3 Prerequisites for Compiler Generation

The interpreters described here exploit two basic principles: The
specializer projectionsspecify how to generate specializers from
interpreters, and thelanguage-preservation propertyof offline par-
tial evaluation is the basis for higher-order removal and conversion
to tail form.

The Specializer Projections Partial evaluation of interpreters
can perform compilation. The specification of anS-interpreterint
written inL is

JintKL PS inp = JPSKS inp

whereJ KL is the execution of anL-program,PS is anS-program,
andinp is its input. AnL→L-partial evaluatorpe can compilePS
into an equivalentL-programPL such thatJPLKLinp = JPSKSinp
as described by the firstFutamura projection[21]:

PL = JpeKL int
sd PS .

Thesd superscript toint means that the partial evaluator is to
treat the first argument ofint as static, the second as dynamic.

Exploiting repeated self-application, the second and third Futa-
mura projections describe the generation of compilers and compiler
generators [28].

A generalization of the Futamura projections shows how to gen-
erate specializers, or constant-propagating optimizers from atwo-
level interpreter[24, 25] 2int which accepts the input to the in-
terpreted program in two parts: one static and one dynamic. The
interpreter tries to perform each operation with the static part of the
input first; only if that fails, the dynamic part is consulted. Residual
programs result from the firstspecializer projection[23, 25]:

RL = JpeK 2intssd PS inps

whereinps is the static part of the input andRL is the special-
ized program. Analogous to the Futamura projections, stand-alone
specializers and specializer generators result result from the second
and third specializer projection.

We will introduce an ordinary one-level interpreter and then
show how to extend it to two levels.
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int compiler Futamura Projections

H
F

−→ H → F
C

2int specializer Specializer Projections

Figure 1: Generation of compilers and specializers

The Language Preservation Property Mix-style offline par-
tial evaluators have thelanguage preservation propertywhich is
obvious from inspecting their specialization phase [28].

For any sublanguageL′ ⊆ L which includes allL′-
computable values as literals, and for any binding-time-
annotatedL-programP every dynamic expression of
which belongs toL′, JpeK P x ∈ L′ holds for arbitrary
staticx.

Specialization of an interpreter can translate higher-order to
first-order programs: Supposepe is a partial evaluator for a sub-
setC of Scheme. The first-order languageF in which the inter-
preter is written hasF ⊆ C. Finally, the interpreter itself executes
programs in the higher-order Scheme subsetH. See Fig. 1 for an
illustration. Becausepe preserves theF -ness of the subject pro-
gram, the residual programs

PF = JpeK intsd PH = JcompilerKPH

—the compiled program—and

RF = JpeK 2intssd PH inp = JspecializerKPH inp

—the specialized program—areF -programs.

4 Deriving the Interpreter

We start from a straightforward, environment-based interpreter and
transform it step by step:

• By subjecting the interpreter to closure conversion, the gen-
erated transformer performs closure conversion as well.

• Converting the interpreter to tail form leads to a transformer
into tail form.

• Next, adding constant propagation in static data turns the
transformer into an optimizer.

• Finally, we introduce a generalization strategy to ensure ter-
mination.

4.1 A Straightforward Interpreter

Figure 2 defines the syntax of the purely functional Scheme sub-
set treated by our interpreters. For the sake of simplicity, we have
restricted it tolambda abstractions of one argument.

Figure 3 shows a standard interpreter for the Scheme subset.
The meta-language is a call-by-value lambda calculus enriched with
constants, sums, and products.T → E1 | E2 denotes the Mc-
Carthy conditional. The notationValue∗ → Value is a shorthand
for the sum of() → Value, Value → Value, Value × Value →
Value etc. We have omitted the injections and case analysis for
elements ofValue. We assume that each expression is uniquely la-
beled by aǹ ∈ Label. Where necessary, we indicate the label by
a superscript.ψ serves for both function and label lookup.

V ∈ Variable
P ∈ ProcName
O ∈ Operators
K ∈ Constants
E ∈ Expression
D ∈ Definition
Π ∈ Program

E ::= V | K | (if E E E) | (O E∗) | (P E∗) |
(let ((V E)) E) | (lambda (V ) E) | (E E)

D ::= (define (P V ∗) E)
Π ::= D+

Figure 2: Syntax

` ∈ Label
Value = BaseValue + (Value→ Value)

ρ ∈ Env = Variable→ Value
ψ ∈ ProcEnv = (ProcName + Label)→ Expression
KJ_K : Constants→ Value
OJ_K : Operators→ Value∗ → Value
EJ_K : Expression→ Env→ Value

EJV Kρ = ρJV K
EJKKρ = KJKK
EJ(if E1 E2 E3)Kρ = EJE1Kρ→ EJE2Kρ | EJE3Kρ
EJ(O E1 . . . En)Kρ = OJOK(EJE1Kρ, . . . , EJEnKρ)
EJ(P E1 . . . En)Kρ = EJψ(P)K[Vi 7→ EJEiKρ]
EJ(let ((V E1)) E2)Kρ = EJE2Kρ[V 7→ EJE1Kρ]
EJ(lambda (V ) E)Kρ = λy.EJEKρ[V 7→ y]
EJ(E1 E2)Kρ = (EJE1Kρ)(EJE2Kρ)

Figure 3: A standard call-by-value interpreter

4.2 Removing λ

As the first step towards true compilation, we apply Reynolds’s de-
functionalization [35], and change the representation of functions
in the interpreter toclosuresconsisting of the label of the origi-
natinglambda expression, and the values of its free variables (see
Fig. 4). (freevars(`) computes the list of the free variables of the
expression at̀ in an arbitrary but fixed order.) Consequently, we
now have a first-order interpreter for a higher-order language.

Closure = Label× Value∗

Value = BaseValue + Closure

EJ(lambda` (V ) E)Kρ = let V1 . . . Vn = freevars(`)
in (`, ρV1 . . . ρVn)

EJ(E1 E2)Kρ = let (`, v1 . . . vn) = EJE1Kρ
(lambda (V ) E) = ψ(`)

V1 . . . Vn = freevars(`)
in EJEK[V 7→ EJE2Kρ,

V1 7→ v1, . . . Vn 7→ vn]

Figure 4: Changes to interpreter after closure conversion

The interpreter shown in Fig. 4 does not specialize effectively
yet. On closure application, the label` is dynamic. Hence, the
lambda expression in the program text would normally be dy-
namic as well which would lead to unwanted interpretive overhead
in the specialized code. Instead, the actual interpreter employs a
binding-time improvementto make the expression argument static
again—called “The Trick” [28]: On closure application, the inter-
preter loops over alllambda expressions that could have generated
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the closure to be applied, comparing each one with` successively.
When the interpreter finds thelambda belonging tò , it continues
interpretation with the now static expression. The interpreter em-
ploys a simple equational flow analysis [11] to restrict the set of
lambdas which it needs to test. The residual code then performs a
sequential dispatch on closure application.

4.3 Converting to Tail Form

In the next step we convert the interpreter to tail-recursive style.
Again, by changing the interpreter, the generated compiler per-
forms the corresponding transformation. In a higher-order setting,
we would transform the interpreter into CPS [35, 20, 4]. CPS
makes control flow explicit by encoding the current evaluation con-
text as a function. As we only have first-order methods at our dis-
posal, we encode evaluation contexts in the same way as functions:
by closures. Thus, we encode the current evaluation context di-
rectly as a function, avoiding an explicit CPS transformation.

E ::= SE | (if SE E E) | (P SE∗) | (SE E)
SE ::= V | K | (O SE∗) | (lambda (V ) E)

Figure 5: Desugared syntax

In our interpreter, a desugaring phase reduces the number of dif-
ferent evaluation contexts to one—the application of a closure. In
non-tail positions we only allowsimple expressionswhich evaluate
directly to values—constants, variables, applications of primitives,
and lambda abstractions. Figure 5 shows the simplified syntax.
In the specification,SE is for simple expressions. The desugar-
ing phase simply moves the non-tail expressions into parameters
to lambda abstractions. Thus, the expression(f(g x)) becomes
((lambda(r)(f r))(g x)). In addition, the desugarer replaceslets
by equivalent applications oflambda abstractions.

The tail-recursive interpreter is shown in Fig. 6.S evaluates
simple expressions.E∗ evaluates “serious” expressions.E∗ has an
additional argument, a context stack, which keeps track of pend-
ing context closures. WhenE∗ reaches a simple expressionSE,
it evaluatesSE via S, and passes the result toC which processes
the stack of pending contexts.C applies the closure on top. If the
context stack is empty,C’s argument is the final result of the inter-
pretation.
S need not be tail-recursive: All calls toS are statically unfold-

able, and consequently never perform function calls. Hence, par-
tially evaluating the interpreter in Fig. 6 yields tail-recursive resid-
ual programs.

4.4 Propagating Constants

Now we turn the transformer into an optimizer to first-order tail-
recursive code. We split the environmentρ into a static and a dy-
namic part, converting the interpreter into a two-level interpreter
and making it amenable to the specializer projections. To support
partially static data structures, we changeρ to associate names with
completely staticvalue descriptionsinstead of dynamic values. A
value description may represent an arbitrary partially static data ob-
ject:

desc ::= quote(K) | cons(desc, desc) | clos(`, desc∗) | cv(i)

A value description can be a completely static atomic value
(quote), a pair of value descriptions (cons), a partially static clo-
sure (clos), or aconfiguration variable[24, 47, 45] whose value
is stored in a separate environmentσ. fresh(σ) yields an unused
configuration variable.

Figure 7 shows the two-level interpreter with the following func-
tions:

S∗J_K evaluates a simple expression to a value description. The
constructorscons and lambda evaluate to the correspond-
ing descriptions. For selector and primitive applications, the
interpreter first examines if it can reduce them statically—for
example, whencar is applied to acons description. If that
is not possible, the interpreter generates a new configuration
variable and maps it to the dynamic result of the expression.
Therefore,S∗J_K returns a new configuation variable envi-
ronment along with the value description. Again, all non-tail
calls in the definition are statically unfoldable.

Note that a simple expression is static if all its free variables
refer to static value descriptions (those that do not containcv
components). For static simple expressions,S∗J_K always
produces a static value.

DJ_K evaluates an arbitrary value description to a value.

E�J_K is the main evaluation function. It is analogous to theE∗J_K
function in the simple tail-recursive interpreter in Fig. 6. The
main difference is in the handling ofif: The interpreter tries
to determine the conditional statically first. Only if that fails,
it introduces a residual conditional. Our implementation can
actually infer a staticif more often than the interpreter shown
in Fig. 6, for example onnull? tests oncons descriptions
with dynamic components.

C� handles context application, analogous toC in Fig. 6. C�
also needs to distinguish between static and dynamic con-
texts. For static contexts, it is trivial to prepare a suitable
environment and continue evaluation. For dynamic contexts,
the interpreter needs to introduce new configuration variables
for their (dynamic) free variables.

The interpreter presented here is not yet suitable for successful
offline partial evaluation. Some standard binding-time improve-
ments [28] are necessary to ensure thatρ andγ as well as the ex-
pression to be evaluated stay static. For instance, the interpreter
also performs “The Trick” on the application of a dynamic context,
just as the interpreter shown in Fig. 4.

4.5 Addressing Non-Termination Woes

The two-level interpreter exhibited in the last section is first-order,
tail-recursive, and performs constant propagation. However, partial
evaluation with respect to a static input program does not terminate
for non-tail-recursive input programs: Mix-style partial evaluators
such as Unmix do not detect and properly handle static data struc-
tures that grow without bounds under dynamic control. Our inter-
preter propagates such data in three places:

1. The stack of evaluation contexts may contain a context that
leads to its own repeated evaluation.

2. A closure may contain a closure generated from the same
lambda expression as part of the value of one of its free vari-
ables.

3. Applications ofcons may nest.

Exactly these conditions lead to self-embedding data structures
which potentially grow infinitely. The critical data structures must
be generalized(coerced to dynamic values) which removes their
static value from the view of the partial evaluator. For closures and
data structures, generalization is straightforward: The interpreter
replaces the offending value descriptions by freshcv descriptions,
and adds the generalized values toσ. To handle dynamic evaluation
contexts, we must split the context stack into a static part and a
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γ ∈ Context = Closure∗

SJ_K : SimpleExpression→ Env→ Value
E∗J_K : Expression→ Env→ Context→ Value
C : Value→ Context→ Value

SJV Kρ = ρV
SJKKρ = KJKK
SJ(O SE1 . . . SEn)Kρ = OJOK(SJSE1Kρ, . . . ,SJSEnKρ)
SJ(lambda` (V ) E)Kρ = let V1 . . . Vn = freevars(`) in (`, ρV1 . . . ρVn)

E∗JSEKργ = C(SJSEKρ)γ
E∗J(if SE E1 E2)Kργ = SJSEKρ→ E∗JE1Kργ | E∗JE2Kργ
E∗J(P SE1 . . . SEn)Kργ = E∗Jψ(P )K[V1 7→ SJSE1Kρ, . . . , Vn 7→ SJSEnKρ]γ
E∗J(SE E)Kργ = E∗JEKρ(SJSEKρ : γ)

Cv((`, v1 . . . vn) : γ′) = let (lambda (V ) E) = ψ(`)
V1 . . . Vn = freevars(`)

in E∗JEK[V 7→ v, V1 7→ v1, . . . , Vn 7→ vn]γ′

Cv[ ] = v

Figure 6: Tail-recursive interpreter

dynamic part, and use the dynamic stack for critical contexts that
may cause non-termination.

We have implemented an online strategy and an offline analysis
for generalization:

Online Generalization Self-embedding data can only grow with-
out bounds inside of the branches of dynamic conditionals
and through bodies of dynamiclambdas [10]. Under the on-
line strategy [46], our interpreter delays generalization until
it encounters a dynamic conditional. In that case, the inter-
preter scansρ andγ for critical data structures and closures,
and generalizes them as described above. Evaluation contin-
ues using dynamic evaluation contexts.

Offline Generalization Analysis An alternative approach uses a
flow analysis [40, 8] to determine statically whichlambdas
and whichcons expressions may lead to critical data in the
interpreter. The corresponding descriptions are generalized
on creation. As for critical evaluation contexts, they are mere-
ly closures already caught by the analysis.

The online strategy is less conservative since it generalizes only
under dynamic conditionals. It necessarily generalizes less and
propagates more static information. However, the online approach
delays the generalization too long: The interpreter can only detect
self-embedding when it has already occurred. Consequently, the
respective code is already part of the residual program. Thus, the
underlying data structures and loops are unrolled at least once be-
fore generalization happens, leading to redundant code. This is a
well-known problem in online partial evaluation [38].

5 Compilation to C

We describe two ways to achieve compilation to the C language.
The first one describes a very simple translation implemented by
hand. It has been implemented and used to obtain the experimental
data presented below. The second one presents a more specula-
tive approach which again employs partial evaluation to obtain a
C program from our Scheme subset. It has not been carried out in
practice.

5.1 By Hand

The output languageS0 of the partial evaluation process is a tail-
recursive first-order subset of Scheme which has a simple translit-

eration to C. The translation of anS0 program to C yields a single
function program. Procedure headers are translated into labels,
hence (tail-recursive) function calls turn out to begotos.

Parameters are passed in a fixed number of variables local to
program, but global to all procedures. On entry to a procedure,
a new C scope is opened which declares the procedure’s private
parameter variables. Then the relevant global parameter variables
are copied into the private variables.

Since procedure calls’ arguments are simple expressions, there
are no nested procedure calls inS0. Therefore the arguments of a
call can be evaluated without referring to the global parameter vari-
ables. Thus the construction of an argument list is straightforward:
generate code to evaluate the simple argument expressions and as-
sign the result to the respective global parameter variables. Finally,
control is transferred to the next procedure by agoto.

The translation of simple expressionsSE is an assignment of
its value to a new temporary variable. Temporary variables are also
local variables ofprogram, but global to all procedures. Each tem-
porary variable is defined and used exactly once. We rely on the
C compiler’s register allocator to merge variables (global param-
eter variables, procedure argument variables, and temporaries) if
their life ranges are disjoint. The evaluation is sequentialized us-
ing C’s sequential evaluation operator(expr, expr). Thus the
result of the translation is a C expression. All other expressionsE
are translated into C statements. For a simple expression areturn
statement is generated which terminates the execution ofprogram.

The most important interface between the tail-recursive inter-
preter and the translation to C is the closure representation. The
interpreter treats closures as an abstract datatype with operations
make-closure, closure-label, andclosure-freevalwith the
obvious interpretations. These operations are propagated to resid-
ual programs. The translator to C is free to choose an efficient
implementation for closures. The current implementation uses a
flat vector representation. Note that the C code also performs a se-
quential dispatch on closure applications exactly like the Scheme
input programs. It might be desirable to perform closure applica-
tion by an indirectgoto statement as allowed by GCC [41]. How-
ever, since sequential dispatch is inherent in our approach, it would
seem difficult to achieve this by straightforward means.

We represent Scheme data objects by a Cunion, and we em-
ploy the Boehm garbage collector for C [6]. There is no coopera-
tion between the translation and the garbage collector.
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ρ ∈ Env = Variable→ ValDesc
σ ∈ CVEnv = ConfigVariable→ Value
γ ∈ Context = ValDesc∗

S∗J_K : SimpleExpression→ Env→ CVEnv→ (ValDesc× CVEnv)
DJ_K : ValDesc→ CVEnv→ Value
E�J_K : Expression→ CVEnv→ Context→ Value
C� _ : ValDesc→ CVEnv→ Context→ Value

S∗JV Kρσ = (ρV, σ)
S∗JKKρσ = (quote(K), σ)
S∗J(cons SE1 SE2)Kρσ = let (desc1, σ1) = S∗JSE1Kρσ

(desc2, σ2) = S∗JSE2Kρσ1

in (cons(desc1, desc2), σ2)
S∗J(car SE)Kρσ = let (desc, σ′) = S∗JSEKρσ

in (desc= cons(desc1, desc2))
→ (desc1, σ′)
| let i = fresh(σ) in (cv(i), σ[i 7→ OJcarK(DJdescKσ′)])

S∗J(cdr SE)Kρσ = analogous
S∗J(lambda` (V ) E)Kρσ = let V1 . . . Vn = freevars(`) in clos(`, ρV1 . . . ρVn)
S∗J(O E1 . . .En)Kρσ = 〈SE1 . . . SEn static〉

→ (quote(OJOK(DJdesc1Kσ, . . . ,DJdescnKσ)), σ)
| let i = fresh(σ)

in (cv(i), σ[i 7→ OJOK(DJdesc1Kσ, . . . ,DJdescnKσ)])
DJquote(K)Kσ = KJKK
DJcons(desc1, desc2)Kσ = OJconsK(DJdesc1Kσ,DJdesc2Kσ)
DJclos(`, desc1 . . . descn)Kσ = (`,DJdesc1Kσ . . .DJdescnKσ)
DJcv(i)Kσ = σ(i)

E�JSEKρσγ = let (desc, σ′) = S∗JSEKρσ in C� descσ′γ
E�J(if SE E1 E2)Kρσγ = let (desc, σ′) = S∗JSEKρσ

in 〈SE static〉
→ (desc= quote(false))→ E�JE2Kρσγ | E�JE1Kρσγ
| (DJdescKσ′)→ E�JE1Kρσγ | E�JE2Kρσγ

E�J(P SE1 . . . SEn)Kρσγ = let (desc1, σ1) = S∗JSE1Kρσ
...

(descn, σn) = S∗JSEnKρσn−1

in E�Jψ(P )K[V1 7→ desc1, . . . , Vn 7→ descn]σnγ
E�J(SE E)Kρσγ = let (desc, σ′) = S∗JSEKρσγ in E�JEKρσ′(desc: γ)

C� descσ(c : γ′) = (c = clos(`, desc1 . . . descn))
→ let (lambda (V ) E) = ψ(`)

V1 . . . Vn = freevars(`)
in E�JEK[V 7→ desc, V1 7→ desc1, . . . , Vn 7→ descn]σγ′

| let (`, v1 . . . vn) = DJcKσ
(lambda (V ) E) = ψ(`)

V1 . . . Vn = freevars(`)
i1 = fresh(σ)

desc1 = cv(i1)
σ1 = σ[i1 7→ v1]

...
in = fresh(σn−1)

descn = cv(in)
σn = σn−1[in 7→ vn]

in E�JEK[V 7→ desc, V1 7→ desc1, . . . , Vn 7→ descn]σnγ
′

C� descσ[ ] = DJdescKσ

Figure 7: Two-level interpreter

5.2 By Partial Evaluation

The recent advent of C specializers [1, 2] facilitates a development
which culminates in a complete compiler written entirely in C. As
ingredients we only have to provide two interpreters,int-s, the

higher-order to first-order interpreter which has been developed in
Section 4, andint-c, a hypothetical interpreter for first-order tail-
recursive Scheme written in C. Our tools are the compiler generator
cogen derived by self-application from the Unmix specializer and
the compiler generatorC-mix [2]. Let J KS denote execution of
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Scheme programs andJ KC execution of C programs.
First, we apply

gen-s = JcogenKS int-s

to obtain a program generator which turns higher-order Scheme
programs into first-order tail-recursive SchemeF .

Next, we applygen-s to itself,

gen-s-ft = Jgen-sKS gen-s,

and obtain the higher-order toF program generator, but now writ-
ten inF !

Now we start on the C end of the translation. AnF→C com-
piler (written in C) is the result of an application ofC-mix toint-c:

gen-c = JC-mixKC int-c.

We can now translategen-s-ft to C by using the compiler just
constructed:

gen-s-ft-c = Jgen-cKC gen-s-ft.

It remains to compose the programsgen-c andgen-s-ft-c to
obtain a full Scheme to C compiler written in C:

scheme->c = gen-c ◦ gen-s-ft-c
Performing the composition merely consists in merging the print
routine ofgen-c with the parser ofgen-s-ft-c.

In essence, we have seen that a Scheme-to-C compiler (written
in C) can be generated by partial evaluation for the price of writing
two interpreters,int-s andint-c:

scheme->c = int-s + int-c + partial evaluation.

The ideas presented in this section have not been realized in prac-
tice, due to the fact that no C specializer is publicly available as of
yet.

6 Experimental Results

We have run some preliminary benchmarks which indicate that the
performance of our approach is comparable to other Scheme com-
pilers which generate C code. Our benchmarks are a program com-
puting derivativesderiv from the Gabriel benchmark suite [22],
the Takeuchi functiontak, a CPS version of itcpstak, a ver-
sion of it using lists instead of integerstakl (also taken from the
Gabriel suite) a version of the Fibonacci function involving clo-
suresfibclos, a suite of calls tocps-append, and a program
solving the 10-queens problemqueens. Figure 8 shows the timings
of the benchmarks as compared with Hobbit 4d [43], an optimiz-
ing compiler which produces code for the scm runtime, used with
maximum optimization and fixnum arithmetic. Our versions of the
benchmarks were all run using the offline generalization strategy.
The tests were run on an IBM PowerPC/250.

The fibclos andcps-append benchmarks indicate that our
approach deals especially well with higher-order code. For the first-
order code intak, deriv, andqueens, our approach introduces
evaluation contexts and thus closures whereas Hobbit can use the
native C stack to some advantage. Note that we have spent no effort
whatsoever on tuning either the resulting first-order Scheme code,
or the translation to C. We believe that further optimizations will
result in an additional substantial performance increase. Also, us-
ing the online generalization strategy, thecpstak benchmark ran
roughly 3 times faster.

Our compiler produces quite compact stand-alone executables.
The complete benchmark suite yields a binary well under 200 Kilo-
bytes—including the Boehm collector.

The programs associated with the optimizing compiler to tail-
recursive Scheme take up less than 70 Kilobytes. The compiler to
C takes up a mere 10 Kilobytes.

We Hobbit
deriv 2420 390
tak 5820 810
cpstak 6400 6490
takl 220 870
fibclos 15820 19480
cps-append 5480 36340
queens 8110 2370

Figure 8: Benchmarks (timings in milliseconds)

7 Related Work

Turchin [47] shows that the interpretive approach can perform pow-
erful transformations. Glück and Jørgensen [24, 25] use the in-
terpretive approach to generate a deforester and a supercompiler.
However, they only deal with first-order languages. Past attempts
at compilers for higher-order languages by partial evaluation have
produced higher-order target code because they are written in high-
er-order languages. Bondorf [7] studies the automatic generation
of a compiler for a lazy higher-order functional language from an
interpreter. Jørgensen shows that optimizing compilers for real-
istic functional languages can be generated by rewriting an inter-
preter [30, 31]. Consel and Danvy [17] use partial evaluation to
compile Algol to tail-recursive Scheme. However, they attribute
their success to sophisticated features of the partial evaluator they
use, Schism, such as partially static data structures and higher-order
functions. Burke and Consel [12] translate Scheme into low-level
stack-machine code by multiple interpretive passes, starting from a
denotational semantics for Scheme. However, they also make ex-
tensive use of higher-order features of the partial evaluator.

The first mention of higher-order removal or defunctionaliza-
tion appears in work of Reynolds [35]. Compilers for functional
languages [42, 4, 3, 20] usually achieve closure conversion with a
direct non-optimizing transformation algorithm, and employ CPS
conversion to transform programs into tail form. Chin and Dar-
lington [13, 14] give a higher-order removal algorithm for lazy
functional languages. However, the resulting program may still
be higher-order—the algorithm does not perform closure conver-
sion. The compilation of higher-order languages via a C compiler
has been used successfully in several projects, such as sml2c [44],
Hobbit [43], Bigloo [39], and the Glasgow Haskell Compiler [34].
In particular, sml2c also translates tail-recursive intermediate code
obtained from a CPS transformation, but uses a function dispatcher
for handling control.

8 Conclusion

We have used the interpretive approach to generate the middle end
of a compiler for a strict, higher-order functional language from
an interpreter. We achieve closure conversion and conversion to
tail form by applying the respective transformations on a straight-
forward interpreter manually. Offline partial evaluation turns the
interpreter into an automatic transformer by virtue of the language
preservation property. Adding constant propagation in static data to
our interpreter then turns the simple transformer into an optimizer
and specializer thanks to the specializer projections. The transla-
tion also makes optimizations present in the partial evaluator such
as post-unfolding and arity raising accessible to the optimizied pro-
grams. In addition, we have presented a translator of the resulting
code into low-level C.

We have formulated the language preservation property, and put
it to use for the optimizing compilation of a higher-order language
into C with little conceptual effort. We consider this a successful
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bootstrapping process. Our results prove that partial evaluation is a
practical approach to the generation of optimizing compilers.
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