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Abstract

We present a direct implementation of the shift and reset con-
trol operators in the Scheme 48 system. The new implementation
improves upon the traditional technique of simulating shift and
reset via call/cc. Typical applications of these operators exhibit
space savings and a significant overall performance gain. Our tech-
nique is based upon the popular incremental stack/heap strategy for
representing continuations. We present implementation details as
well as some benchmark measurements for typical applications.
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1 Introduction

Call/cc (or call-with-current-continuation) [4]is becom-
ing an established part of the vocabulary of the programming
language community. Call/cc captures or reifies the current
continuation—the control state of the underlying machine—into an
escape procedure and passes it to its argument, which must be a
one-argument procedure. The escape procedure, when called, dis-
cards its current continuation and throws or reflects the original con-
tinuation back into the machine state.

The translation provided by the Danvy/Filinski CPS transforma-
tion [9] gives a definition of the semantics of call/cc. The meat of
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[xdp = Ak(k(px))
DaeMlp = Mk WAk ([M])(plx— v]) k)
[E1 E2]p = Mk[Ei]p (Af.[E2]p (Aa.f ak)

Figure 1. Continuation semantics

this transformation has a direct counterpart as a semantic specifica-
tion of the A calculus; Figure 1 shows such a semantic specification
for the bare A calculus: each p is an environment mapping variables
to values, and each k is a continuation—a function from values to
values. An abstraction denotes a function from an environment to a
function accepting an argument and a continuation.

In the context of the semantics, the rule for call/cc is this:
[call/cc E]p = Me.[E]p (Af.f (MWAK .k v) k)

Call/cc E evaluates E and calls the result f; it then applies f to an
escape function which discards the continuation k" passed to it and
replaces it by the continuation k of the call/cc expression.

The applications of call/cc are numerous and include the imple-
mentation of interpreters and compilers, exception systems, corou-
tines, multi-threading, and non-deterministic computation. Because
of the central role of call/cc in these applications, implementors
of functional languages have developed representations for contin-
uations enabling fast implementations of call/cc [5].

The control, shift and reset operators are a more recent inven-
tion [11, 8]. In contrast to call/cc that always captures the entire
control state, control, shift and reset allow capturing only a
portion of one—a so-called composable continuation—thus allow-
ing for more flexibility and expressiveness. We focus on shift and
reset in the high-level presentation. We later show how to imple-
ment shift in terms of the slightly more primitive control.

Reset introduces a context delimiter; shift turns the context be-
tween the shift construct and the enclosing delimiter into a pro-
cedure and removes that part of the context. Shift and reset are
best understood by some examples:

A sole reset has no effect:
(+ 1 (reset 3)) ~ 4

Shift deletes the context up to the next enclosing reset:

(+ 1 (reset (* 2 (shift k 4)))) ~ 5



Here is an single invocation of a composable continuation:
(+ 1 (reset (* 2 (shift k (k 4))))) ~ 9

Multiple invocations are also possible:
(+ 1 (reset (* 2 (shift k (k (k 4)))))) ~ 17

Semantically, shift and reset have the following definitions in
the context of the semantics in Figure 1 [9]:

[reset E]p M k([E]p (Av.v))
[shiftc M]p = Ak[M](p[c— MK K (kv)]) (Av.v)

Reset seeds the evaluation of E with an empty continuation—the
identity function. It then passes the result of evaluating E to k. This
does not affect evaluation as long as there is no shift: after all, k
would be applied to the final result of evaluating £ anyway. How-
ever, call/cc and shift expressions evaluated as part of E now see a
truncated continuation, as k has been moved out of their view. Shift
reifies this truncated (or delimited) continuation into a function that
composes it with its own continuation and binds that function to c.
It then evaluates the body expression M within the empty continua-
tion.

A number of applications make inherent use of shift and reset,
among them direct-style formulations of monads [13, 14], continu-
ation-based partial evaluation [21, 22, 26], and type-directed partial
evaluation [6]. However, implementations of these control opera-
tors are usually formulated in terms of call/cc. This is a reason-
able and quite portable approach. However, these indirect imple-
mentations of shift and reset exhibit suboptimal performance.

Therefore, we have implemented shift and reset directly. As it
turns out, the direct implementation provides significant speedup of
applications using these control operators.

Contributions

Here are the contributions of our work:

e We show how to implement control, shift, and reset di-
rectly in the context of the popular incremental stack/heap
strategy for implementations of continuations, avoiding some
of the overhead associated with indirect implementations of
these operators via call/cc.

e We show that most typical applications of shift and reset
benefit significantly from the performance improvements
gained by their direct implementations. We evaluate a num-
ber of standard benchmarks. In particular, we show that
the direct implementation is an enabling technology for
shift/reset-based thread systems, avoiding some of the pit-
falls of call/cc-based implementations.

e We explain how the results of this paper apply to other pro-
gramming language implementations.

Overview

The paper is organized as follows: The next section reviews the
traditional, indirect implementation technique of shift/reset via
call/cc. The following Section 3 explains briefly the general idea
of implementing shift/reset directly. The two sections after that
explain a direct implementation in more depth: Section 4 gives a
brief overview of the architectural elements of Scheme 48 involved
in the implementation. Section 5 details the direct implementation

of shift/reset in Scheme 48. Section 6 presents results from a
number of benchmarks. Section 7 reviews alternative implementa-
tion strategies for continuations, and if and how they may benefit
from a direct implementation of shift/reset. Section 8 surveys
some related work, and Section 9 concludes.

2 Shift/Reset and Call/cc

The traditional implementation of shift/reset [13] involves man-
aging a meta-continuation. Meta-continutations arise from CPS-
transforming the continuation semantics. The result then gives rise
to an implementation of shift/reset in terms of call/cc. This
section reviews this indirect implementation technique.

CPS-transforming the continuation semantics is a natural step as
the rule for reset in the continuation semantics does not conform
to CPS; it contains a non-tail call. Thus, with the rule for shift in
place, the semantics manages both the usual explicit continuation
as well as a new implicit continuation. Their composition yields
the usual intuition of the entire future of the computation.

[xlp A m.k (p x) m
[Ax.M]p Mem.k (WK A’ [M] (p[x — v]) K m') m
[E1 Ex]p = M[Ei]p (Af A [Ex]lp hadm”.fakm")m') m

Figure 2. Meta-continuation semantics

CPS-transforming the semantics makes this new implicit continu-
ation, now called the meta-continuation, explicit again. Figure 2
shows the result—a meta-continuation semantics for the A calcu-
lus [8]: the new meta-continuation is called m, and the “old” con-
tinuation, k, accepts a meta-continuation as an argument. For stan-
dard A terms, nothing fundamental is changed compared to the
continuation-semantics—the new semantics simply threads an ad-
ditional continuation through the evaluation process.

The meta-continuation does not yet do anything—it is shift and
reset that manipulate it. Here are the rules for shift/reset:
[reset E]p Medm. [E]p (Ax.Am’.m’ x) (Ark r m)

[shiftc M]p = M. [M](p[c— M.k dm” kv (Aw.k' wm")])
(Aw.Am'.m' w) m

Just like in the continuation semantics, reset seeds the evaluation
of E with an empty continuation (Ax.Am’.m’ x) that passes its argu-
ment to the meta-continuation, ignoring k. Whereas the continua-
tion semantics applies k “directly,” the meta-continuation semantics
does this in the meta-continuation. Shift also seeds with an empty
continuation, and binds ¢ to a function that applies the currently
delimited continuation k to its parameter v, calls the result w and
passes that to its continuation k’.

Call/cc also has a place in the new semantics:
[call/cc E]p = M. Am.[E]p (Mf ' f (W MK A kv ) km') m

Note that, just like shift, it only reifies the k part of the entire con-
tinuation. This means, that reset influences call/cc.

The meta-continuation semantics is the key for implementing
shift/reset in terms of call/cc and assignment. Olivier Danvy
contributed an implementation of shift/reset to the Scheme 48
distribution [20], which is closely based on the original SML for-
mulation by Andrzej Filinski [13].



First, macros for reset and shift package up their expres-
sion operands as procedures and pass them to procedural cousins
*reset and *shift that do the actual work:

(define-syntax reset
(syntax-rules ()
((reset ?e) (*reset (lambda () ?e)))))

(define-syntax shift
(syntax-rules ()
((shift 2k ?e) (*shift (lambda (?k) 2e)))))

The *meta-continuation* variable holds the current meta-
continuation:

(define (*meta-continuation* v)
(error "You forgot the top-level reset..."))

Note that *meta-continuation* will be assigned to procedures
which replace the current continuation. Hence, the *abort proce-
dure has the effect of discarding the current continuation (k in the
semantics), leaving only the meta-continuation:

(define (*abort thunk)
(let ((v (thunk)))
(*meta-continuation* v)))

*Reset is next. In the meta-continuation semantics, reset extends
the meta-continuation by the current continuation. *Reset uses the
escape procedure created by call/cc as the representation of the
current continuation:

(define (*reset thunk)
(let ((mc *meta-continuation*))
(call-with-current-continuation

(lambda (k)
(begin
(set! *meta-continuation*
(lambda (v)
(set! *meta-continuation* mc)
(k v)))

*Reset replaces the meta-continuation by one that calls the current
continuation after restoring the old meta-continuation. As the meta-
continuation is single-threaded through the semantics [13], the as-
signments have the same effect as the composition in the semantics.

Finally, *reset discards the current continuation; this is exactly
what *abort does:

(*abort thunk))))))

*Shift must call its argument with a procedure that composes the
continuation of the *shift call with its own continuation:

(define (*shift f)
(call-with-current-continuation
(lambda (k)
(*abort (lambda ()
(f (lambda (v)
(reset (k v)))))))))

The call (k v) discards its own continuation. Therefore, it
is surrounded by a reset that moves this continuation into
*meta-continuation*, effectively protecting it. Again, *shift
must discard its own current continuation with *abort.

Filiniski gives a rigorous derivation of this implementation
of shift/reset—it is extensionally equivalent to the meta-
continuation semantics. However, intensionally, the implementa-

tion is different from the semantics: whereas the semantics has the
continuation proper parameterized over the meta-continuation, the
implementation uses the underlying call/cc which always reifies
the entire machine-level continuation. This is too large, sometimes
by a sizable amount, and, as Section 6 demonstrates, causes a sig-
nificant performance penalty.

It is possible to reduce the dead storage taken up by the representa-
tions of composable continuations by having the *abort procedure
apply thunk with an empty or very small continuation, thus poten-
tially reclaiming some dead storage early. (In fact, the Scheme 48
version does just that.) However, as it turns out, this optimization
does not affect run-time performance in a significant way. (See
Section 6.5.)

3 Direct Implementation of shift/reset

Consider shift and reset in the context of a representation for
continuations using linked frames. Reset marks a place in the con-
tinuation chain which delimits the context later reified by shift.
Shift reifies the continuation section up to the enclosing mark cre-
ated by reset, and creates a procedure that will add this section to
the chain. This procedure must also set a mark at the link point in
the chain which corresponds to the statically most recent reset for
the reified section. Figure 3 displays the evaluation of (shift k
e) in terms of linked continution frames: It cuts off the section of
the chain consisting of frames Top and Reset and binds the reified
procedure to k. The continuation for the evaluation of the body e
starts with frame C2.

(shift k e)

Top

Base

Figure 3. Evaluation of a shift expression

If the continuation chain resides in the heap, this strategy involves
copying of continuation frames both during reification and reflec-
tion. However, most implementations of Scheme use a represen-
tation for continuations involving a stack cache [5] which contains
the most recent continuation frames. In these implementations, cap-
turing the current continuation via call/cc flushes the stack cache
and moves the continuation frames to the heap.

A direct implementation of shift/reset can exploit the presence
of a stack cache in a simple manner: Instead of copying continu-
ation frames one-by-one, shift simply block-copies a slice from
the stack into the heap starting at the current continuation up to the
frame marked by reset. During reflection, the slice is copied back
on the stack. This strategy yields a fast and simple implementation
of shift/reset.

Of course, shift and reset are not always this lucky: The marked
continuation frame might reside in the heap instead of the stack
cache. Also, the reified slice may be bigger than the stack cache.
An implementation has to consider these complications, along with
several others.



4 Architecture of Scheme 48

We consider a direct implementation of shift/reset for a pre-
release of Scheme 48 1.0 [20], a byte-code implementation of
Scheme. Scheme 48 is attractive because its VM is written in Pre-
Scheme [19], a low-level dialect of Scheme; this simplifies present-
ing actual code. This section gives a short overview of the architec-
ture of Scheme 48, highlighting the most important aspects.

4.1 The Incremental Stack/Heap Strategy

Scheme 48 uses the incremental stack/heap strategy for represent-
ing the current continuation; it stores the most recent continuation
frames on the stack, which is thus effectively a cache. Scheme 48
pushes new continuation frames on the stack upon procedure calls
and pops them upon return. If the continuation does not fit com-
pletely in the stack cache, the early frames reside in the heap.

The bottom frame in the stack cache is always an underflow con-
tinuation frame. The code of this frame copies its parent from the
heap into the stack and invokes the parent afterwards. Hence, ev-
ery continuation frame can safely return to its parent: the underflow
frame will mediate between stack and heap.

Top

Underflow |<-

Underflow |<-

Figure 4. Incremental stack/heap strategy

The top half of Figure 4 shows a typical setup for the incremental
stack/heap strategy: The topmost frame of the current continuation
Top is on the stack with one of its parents Topl. Two frames Heapl
and Heap2 have been migrated to the heap and linked to the under-
flow continuation frame (Underflow). The bottom half of Figure 4
shows the situation after Top and Topl have returned: The under-
flow frame has copied Heapl from the heap to the stack.

In Scheme 48, stack continuation frames usually consist of three
parts:

1. Optional pointers to the current environment and the current
template. The template contains descriptors for constants the
code may need.

2. The operands of the currently active procedure call.

3. A code pointer. Scheme 48 maintains the size of the continu-
ation frames in headers in the byte code.

The topmost frame does not contain an explicit code pointer be-
cause it is currently executing in the VM. The frames need not be
explicitly linked on the stack, as the compiler computes their sizes
statically, and places the sizes inside the code.

Scheme 48 creates fresh, flattened environments upon closure cre-
ation. It maintains sharing of state by creating heap-allocated cells
for shared mutable variables.

A heap continuation object consists of a copy of a stack continua-
tion frame, along with three added values:

1. the code of the continuation—represented as a code vector,
2. an offset within the code vector, and

3. adescriptor for the next continuation object.

Heap continuations occur upon call/cc or when the stack over-
flows. In these cases, the VM walks down the stack and creates
heap objects for the continuation frames, computing code vector
and offset along the way, and chaining the frames together.

Among the various strategies for implementing continuations in the
presence of call/cc, the incremental stack/heap strategy compares
quite favorably [5]. The compact stack frame representation used
by Scheme 48 makes the implementation particularly fast.

4.2 The Virtual Machine

The VM is essentially a stack machine. The stack grows towards
lower addresses and holds parameters for procedure calls as well as
continuation frames and environment frames. The VM manages a
number of registers in global variables:

e *code-pointer* points to the current instruction

e *cont* points to the continuation frame on the stack just be-
neath the current one

e *pottom-of-stack* points to the underflow continuation

e *heap-continuation* is the part of the current continuation
which resides in the heap

e *val* contains the first parameter or a return value

The Scheme 48 VM represents all data objects as 32-bit descriptors.
Its lower 2 bits indicate the type of the descriptor; the remaining
30 bits are data which are either an immediate representation of a
small value or an encoded pointer into the heap.

S Implementation

This section describes our direct implementation of shift/reset.
All code examples are taken verbatim from our implementation
atop the Scheme 48 1.0 Virtual Machine. Our implementation
builds straightforwardly upon the stack/heap strategy. However, a
few technical complications arise, and therefore our presentation is
fairly detailed.

We start with accounts of reset and shift for the stack-bound
case and then show how to extend the approach for continuations
residing in the heap.

5.1 Reset

Reset delimits the section of the continuation that shift may cap-
ture later. Reset evaluates its argument under the empty continua-
tion, and applies its current continuation to the result. Thus, reset
effectively erects a barrier in the continuation frame chain.

An easy way to erect the barrier is to set a flag in the current contin-
uation frame, and ensure that subsequent calls to shift will only
reify the part of the continuation chain up to the most recent mark.
The compiler merges the continuations of differnet calls into a sin-
gle frame on the stack whenever possible. Therefore, reset has



to make sure that the last continuation frame to be reified is repre-
sented by a separate frame by creating a thunk and evaluating an
unknown call to it.

As a place for the mark, continuation objects receive a further field
which is set to zero in normal continuations. A new VM operation
mark-reset-cont sets the mark in the topmost frame of the current
continuation. The mark-reset-cont operator is implemented by
the add-reset-marker! procedure:

(define (add-reset-marker!)
(if (address= *cont* *bottom-of-stack*)
(if (not (= *heap-continuation* false))

(set-heap-continuation-marker! *heap-continuation* 1)

(set-stack-continuation-marker! *cont* 1)))

Add-reset-marker! checks whether the current continuation is an
ordinary frame on the stack or if it is *bottom-of-stack* which
means that the the current continuation resides in the heap. Due to
the different representation of stack and heap continuations, differ-
ent procedures to mark the frames must be used.

Here is the definition of reset:

(define-syntax reset
(syntax-rules ()
((reset body ...)
(call-thunk (lambda () (mark-reset-cont) body ...)))))

5.2 shift

Shift must do two things: First, it must reify the section of the
continuation up to the last reset into a heap object. Second, shift
must construct a procedure that composes the current continuation
with the saved section and applies the result to its argument. Shift
must ensure that the context of the reified continuation is itself de-
limited. Making this explicit corresponds to implementing shift
via Felleisen’s control [11] and is also known as the F- calcu-
lus [8].

Control is a macro which calls the procedure control* with the
body wrapped in procedure. Control* takes the one-argument pro-
cedure as its argument and passes it the composition procedure.
Create-stack-slice is responsible for turning the section of the
continuation into a value. Copy-slice-to-stack composes the
saved section with the current continuation:

(define (control* proc)
(let ((slice (create-stack-slice)))

(proc

(lambda (val)
(copy-slice-to-stack slice)
val))))

Control implements the (control v e) binding form which
binds the continuation to v and evaluates e under that binding:

(define-syntax control
(syntax-rules ()
((control c body)
(control* (lambda (c) (reset body))))))

The macro for shift relies upon control and inserts the needed
reset to get F-:

(define-syntax shift
(syntax-rules ()
((shift c body)

(control cc (let ((c (lambda (x) (reset (cc x)))))
body)))))))

In our actual implementation we depart from the F- approach for ef-
ficiency reasons: Properly supporting multiple-value returns would
incur too much overhead converting reifying multiple return values
into lists and vice versa. We inline control into shift:

(define-syntax shift
(syntax-rules ()
((shift ¢ body)
(shift* (lambda (c) body)))))

This definition omits the reset because create-stack-slice
will leave the marked continuation on the stack.

Here is the definition of shift*:

(define (shift* proc)
(let* ((slice (create-stack-slice))
(c (lambda vs
(copy-slice-to-stack slice)
(apply values vs))))
(proc c)))

The reset omitted here is performed by copy-slice-to-stack.

5.2.1 Reification

The following code implements the primitive create-stack-
slice within the VM:

(define-primitive create-stack-slice ()
(lambda ()
(let ((v (copy-slice-to-heap)))
(set! *val* v)
(goto continue 0))))

It calls copy-slice-to-heap which returns the slice, loads the
value register with it and jumps back into the main interpreter loop
via continue.

Here is the first part of the relevant procedure, copy-slice-to-
heap:

(define (copy-slice-to-heap)
(ensure-*cont*-in-stack!)
(receive (cont is-reset-cont?)
(find-next-stack-reset-cont)
(if (address= cont (integer->address 0))
(create-empty-slice)
(1f is-reset-cont?
(create-slice-from-stack cont)
(continued in next section)

To avoid excessive special casing in the rest of the code, copy-
slice-to-heap first calls ensure-*cont*-in-stack to make
sure there is at least one continuation frame on the stack. Then,
it calls find-next-stack-reset-cont to obtain the last continu-
ation frame to be reified.! If the section of the continuation to be
reified is empty, copy-slice-to-heap simply creates a heap ob-
ject representing an empty slice via the create-empty-slice pro-
cedure. Otherwise, the code determines whether the section to be
reified indeed resides entirely within the stack. For this section, the

IReceive is syntactic sugar for call-with-values, as de-
scribed in SRFI 8 (http://srfi.schemers.org/srfi-8/). In
this example, it binds cont and is-reset-cont? to the return
values of find-next-stack-reset-cont.



presentation assumes that it does indeed fit; Section 5.3 discusses
the situation when this is not the case.

The find-next-reset-cont procedure walks down the continu-
ation frames on the stack until it encounters a reset mark. It then
returns the parent frame or 0 if the current continuation is marked.
If find-next-reset-cont does not find a marked continuation on
the stack, it returns the last continuation frame on the stack (the par-
ent of *bottom-of-stack*). The second return value indicates the
case which occurred by a boolean flag:

(define (find-next-stack-reset-cont)
(let 1p ((cont *cont*) (prev (integer->address 0))
(if (address= cont *bottom-of-stack*)
(values prev
(not

(i 0))

(heap-continuation-marker-zero?
*heap-continuation*)))
(if (not (= (stack-continuation-marker cont) 0))
(values prev #t)
(lp (stack-cont-continuation cont) cont

Create-slice-from-stack performs the actual work by copying
the stack slice represention the section of the continuation to a heap
object en bloc.
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Figure 5. Representing continuation chains with offsets
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Scheme 48 uses relative offsets rather than absolute addresses for
the intra-stack references as shown in Figure 5. Offsets are repre-
sented by arrows with angles. The continuation reset in the heap
has no parent in the copied slice.

Stack slices present a challenge to the garbage collector; the
Scheme 48 GC ordinarily only handles heap objects consisting en-
tirely of descriptors or entirely of bitmap data; stack slices contain
both. Accordingly, we have extended the garbage collector by a
custom trace procedure. The first continuation frame of a stack
slice is the root of the slice.

Here is the code for create-slice-from-stack:

(define (create-slice-from-stack reset-cont)
(let* ((len (stack-slice-size reset-cont))

(+11)))))

)

(key (ensure-space (needed-bytes-for-stack-slice len)))

(slice (make-stack-slice len key)))
(copy-slice! slice len)
(set! *cont* (stack-cont-continuation reset-cont))
slice))

Create-slice-from-stack allocates a slice object and calls
copy-slice! to copy the stack section into it. After this, it sets
the current continuation to the parent of reset-cont, also setting
the reset mark. This corresponds to the deletion of the section of
the continuation reified by shift. Create-slice-from-stack re-
turns the created slice.

Copy-slice! calls the Pre-Scheme primitive copy-memory!
which is translated into C’s memcpy:

(define (copy-slice! slice len)
(let ((to—address (address-after-header slice))
(start *cont*))
(copy-memory! start to-address len)))

5.2.2  Reflection

Copy-slice-to-stack is comparatively simple:

(define (copy-slice-to-stack! slice)
(add-reset-marker!)
(1f (double-slice? slice)
(install-double-slice! slice)
(if (not (empty-slice? slice))
(set! *cont* (really-copy-slice-to-stack slice)))))

This first adds a reset marker to the current continuation frame as
described in Section 5.2. The first conditional determines if the
slice about to be reflected will not fit within the stack cache; this
exceptional case is described in the next section. For empty slices,
nothing needs to be done. For normal slices, the work is relegated
to the really-copy-slice-to-stack procedure:

(define (really-copy-slice-to-stack slice)
(save-temp0O! slice)
(let* ((len (b-vector-length slice)))
(ensure-stack-space! (bytes->cells len))
(let ((slice (recover-temp0!))
(new-cont (address-
(address+ *stack*
(cells->a-units
(operands-on-stack)))
(bytes->a-units len))))
(copy-args-above-incoming-cont! new-cont
(operands-on-stack))
(copy-slice-bytes slice new-cont)
new-cont)))

Ensure-stack-space! ensures there is enough place on the stack,
flushing the stack cache to the heap if necessary. If this triggers a
garbage collection, save-temp0! tells the collector that slice is
live, and recover-temp0! recovers it if the collector has moved
the slice. Next, the code computes the target address for the top-
most continuation frame of the slice: This is len bytes below the
current top of the stack plus the operands that are currently lying
on the stack. These operands must be moved from their current lo-
cation to the new top of the stack which is just above new-cont.
Copy-args-above-incoming-cont! is responsible for this. Now
there is room on the stack, and the continuation current prior reflec-
tion starts len bytes away from new-cont. Copy-slice-bytes
then copies the actual data.

The copy-slice-bytes computes the source address and the
number of bytes to be copied from the slice and simply calls
copy-memory! to perform the copying.

(define (copy-slice-bytes slice to-start)
(let* ((from-start (address-after-header slice))
(len (b-vector-length slice)))
(copy-memory! from-start to-start len)))

5.3 Reifying Heap Continuation Frames

The previous discussion assumed that the continuation section to be
reified resides entirely within the stack. As described in Section 4.1,
continuation frames are migrated to the heap upon call/cc or in
the case of a stack overflow. The direct implementation of shift
must cope with two problems in this situation:



1. The block-copy strategy is no longer sufficient. Instead, the
VM needs to to copy heap continuation frames sequentially
into the slice.

2. The resulting slice may be larger than the stack cache which
means a simple block copy is not enough to implement reflec-
tion.?

The remaining code of the copy-slice-to-heap procedure deals
with these cases; it first searches for the reset continuation in the
heap and then branches on the condition of the second problem:

(receive (reset-cont
required-size-on-stack
required-size-on-heap)
(find-next-heap-reset-cont)
(1f (< (+ (current-stack-size)
required-size-on-stack) ; approximation
(maximum-stack-size))
(create-slice-in-two-steps cont
reset-cont
required-size-on-stack)
(create-double-slice cont
reset-cont
required-size-on-heap)))))))

Find-next-heap-reset-cont returns the continuation along with
the amount of space required to copy these continuations to the
stack or to the heap, respectively. Due to the different represen-
tations of continuations these numbers differ.

Top ]
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Figure 6. Creating a double slice

If a part of the section resides in the heap but the entire section is
not larger than the maximum size of the stack, create-slice-in-
two-steps creates a slice big enough to hold the chain and fills
it. If the section is larger than the stack, create-double-slice
creates a special object (a double slice) that holds two slices: one
for the stack, the other for the continuation frames that must go
to the heap. Figure 6 shows the creation of a double slice. During
reflection of a double slice, only the first slice is copied on the stack,
while a copy of the second is linked to the bottom frame. Note that
copying the heap frames (and thus breaking sharing) is necessary to
modify the last continuation’s parent during reflection.

The code for handling heap continuation frames is mostly as in the
original Scheme 48. We have therefore omitted it here.

ZNote that this issue does not occur with call/cc: The under-
flow frame simply copies continuation frames residing in the heap
into the stack cache one-by-one.

6 Benchmarks

This section describes a number of benchmarks of the direct imple-
mentation of shift/reset, notably:

o Filinski’s representation of monads
e combinator-based partial evaluation

e type-directed partial evaluation

We have also used shift/reset toimplement a thread system. The
first set of benchmarks shows that all of these applications exhibit
absolute performance gains under the direct implementation. The
direct implementation of shift/reset is an enabling technology
for implementing efficient thread systems via shift/reset.

It is difficult to precisely account for the speedup in each separate
case, as the indirect and direct implementations of shift/reset
lead to very different access patterns to the stack and to the heap:
The indirect implementation tends to flush the stack cache of-
ten, keeping only the (non-meta-)continuation within the cache.
Each flush is accompanied by a representation change. In con-
trast, many reifications in the direct implementation do not flush
the stack cache, and do not involve a representation change. The
direct implementation potentially performs less sharing than the in-
direct implementation. Moreover, speed-ups necessarily vary with
the amount of computation performed between reifications and re-
flections of continuations. However, across the benchmarks, the
direct implementation performs uniformly better than the indirect
one.

Note that all performance gains were obtained under a compara-
tively slow evaluator. These applications, when run under a native-
code implementation of Scheme should benefit significantly more,
as there is almost no interpretive overhead in executing shift and
reset. We expect to obtain timings from the upcoming native-code
version of Scheme 48 soon.

All timings were obtained on a Pentium III system with 666 Mhz
and 128 MB RAM, running FreeBSD 4.3. We used our modified
version of a prerelease of Scheme 48 1.0 with an initial heap size
of 80 MB and the standard stack size of 10 Kb; none of the tests
triggered a garbage collection.

6.1 Monads

The essence of Filinski’s work on representing monads [13] is the
introduction of two combinators for conversion between value-level
expressions and meta-level computations. Reify uses the monadic
constructor eta to turn a computation into an expression. Eta uses
reset to limit the extent of the computation. Its dual operation,
reflect, calls the monadic combination function extend to apply
a computation (which corresponds to a section of the continuation
obtained by shift) to an expression:

(define (reflect meaning)
(shift k (extend k meaning)))
(define (reify thunk)
(reset (eta (thunk)))))))

We have run applications using the parsing monad and the ambiva-
lence monad. For benchmarking monadic parsing, we constructed
a parser for arithmetic expressions similar to Hutton’s [18] and ap-
plied it to a term with about 450 operators.



The ambivalence monad and the test expressions we used are de-
fined as:

(define (eta x) (list x))
(define (extend f 1) (apply append (map f 1)))

(define-syntax amb (syntax-rules ()
((amb x ...) (amb* (lambda () x) ...))))
(define (amb* . t)
(reflect (apply append (map reify t))))))

(define (www)
(let ((f (lambda (x) (+ x (amb 6
(reify (lambda () amb 0

(define (wwww)
(let ((f (lambda (x) (+ x (amb 6 4 2 8) (amb 2 4
(reify (lambda () (f (f (f (amb 0 2 3 4 5 32))

4 2 8) (amb 2
234 )

5 32))
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Figure 7. Timings for monads (in seconds)
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Figure 7 shows the timings for the monad examples. The bars la-
beled “Indirect” list the results for the call/cc-based implementa-
tion of shift/reset, whereas the column labeled “Direct” contains
the timings for our direct implementation of shift/reset. The
speedups for these very shift/reset-intensive benchmarks are in
the range of a factor of three. To see where the direct implemen-
tation improves the performance consider Figure 8 which shows
the number of bytes copied from the stack to the heap and vice
versa. Our direct implementation copies significantly fewer bytes.
Another improvement shown in Figure 9 is the number of copy op-
erations. It drops by a factor of three to five from the indirect to the
direct implementation, whereas the average number of bytes moved
by a single copy-memory! increases from 12 to 20 bytes.
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Figure 8. Continuation frames copied for monads (in Kbytes)
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6.2 Combinator-Based Partial Evaluation
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Figure 10. Timings for combinator-based partial evaluation (in
seconds)

A partial evaluator takes a program as input and specializes it with
regard to some of the arguments of the program. Continuation-
based approaches to partial evaluation use composable continua-
tions to represent dynamic context accumulated during specializa-
tion [21]. Thiemann’s PGG system [27] uses a direct-style version
of this transformation implemented via shift/reset.

We have used benchmarks from Helsen’s and Thiemann’s paper
on comparing combinator-based and type-directed partial evalua-
tion [16]. These benchmarks are interpreters; partial evaluation
yields compiled versions of the input programs. These are the pro-
gramming languages accepted by the interpreters:

Mixwell is a first-order purely functional language.

Tiny is a small imperative language with expressions, assignment,
if, while and sequencing.

Mini-Scheme is a large subset of Scheme, lacking only call/cc
and support for multiple return values.

We used a standard test program for the Mixwell interpreter, and the
factorial procedure for the Tiny interpreter. The Mini-Scheme inter-
preter was specialized to several programs from Andrew Wright’s
benchmark suite for Scheme: app, the append procedure, boyer,
a term-rewriting system, matrix that tests a random matrix to be
maximal under permutation and negation of rows and columns, and
gpscheme, an implementation of genetic programming.
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Figure 11. Continuation frames copied for combinator-based
partial evaluation (in Kbytes)
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Figure 12. Copy operations for combinator-based partial eval-
uation

Figure 10 contains the specialization timings. Here, the speedup is
quite uniformly between 10% and 20%. Again, Figure 11 shows the
summarized size of the moved continuation frames. It is interest-
ing to note that indirect approach copies exactly the same amount
of memory from the stack as vice versa whereas our direct imple-
mentation moves more memory from the heap to the stack. Fig-
ure 12 shows the number of memory copy operations during the
benchmarks. Our direct approach typically cuts down the number
of operations to a third.

6.3 Type-Directed Partial Evaluation

Danvy’s type-directed partial evaluation (TDPE) [6] is an alterna-
tive approach to partial evaluation which operates on the compiled
version of the subject program. TDPE also uses shift/reset to
capture context. We have applied TDPE to the same examples as
PGG. Figure 13 shows the result. The speedups obtained were sim-
ilar to those obtained with PGG. Figure 14 shows a peculiarity: For
the specialization of the Mixwell interpreter, our implementation
copies an order of magnitude more than the implementation based
on call/cc butis still faster. The speedup can be explained by the
number of copying operations: Figure 15 shows that this number
drop by a factor of three. This also dramatically increases the bytes
per copy operation from 12 in the indirect implementation to 354 in
our implementation.
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Figure 13. Timings for type-directed partial evaluation (in sec-
onds)
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Figure 14. Continuation frames copied for type-directed partial
evaluation (in Kbytes)

6.4 Threads

The use of first-class continuations for efficient implementations of
thread systems is not new: On a context switch, the system rei-
fies the continuation of the running thread and stores it within the
scheduler. Next, the scheduler replaces the current continuation by
the stored continuation of another thread, thus invoking that thread.
However, call/cc reifies not just the continuation of the thread but
also the continuation of the scheduler. This also can lead to a space
leak [2]. In a thread system using shift and reset, it is possible
to delimit the continuation of the thread with a reset.

To measure the effects of this approach, we have modified the
thread system of Scheme 48 to use shift/reset. As the continua-
tion of a thread may receive multiple values it was necessary to ex-
tend the implementation. Instead of using variable-arity procedures
in the implementation described in Section 5, we built directly on
the slice-copying operations provided by the VM just as the stock
Scheme 48 system uses VM-level continuation primitives.

If the user has access to shift/reset, a reset would prevent the
thread system’s shift from finding the reset mark delimiting the
continuation of the thread [2]. This could easily be remedied in our
implementation by changing the reset mark to be the thread uid of
the thread which set the mark. As the scheduler is a thread by itself,
it does not interfere with the other threads.
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For the actual measurements we adopt the benchmarks by Brugge-
man et al. who use one-shot continuations for implementing
threads [3]. Each thread computes the 20th Fibonacci number. We
vary the number of procedure calls between two context switches
for a fixed number of 100 threads. Figure 16 shows the resulting
timings. Just like Bruggemann et. al. we observe a speedup only
for very frequent context switches whereas the timings are equal
when the context switches happen at a lower rate than every 64 pro-
cedure calls. Figure 17 shows that the number of copied bytes is
much larger in the shift/reset case than in the call/cc imple-
mentation. The number of copy operations, however, is linear to the
number of context switches in the shift/reset case as Figure 18
reveals. This figure also shows that the standard call/cc approach
cannot hold this limit when context switches become less frequent
as the running thread is more likely to return to a continuation on
the heap the longer it runs. As the context-switch rate decreases, the
pure execution time of the threads dominates, yielding similar per-
formance with both approaches. These observations coincide with
those of Bruggeman at al.

6.5 Optimizing *Abort

As mentioned in Section 2, the indirect implementation of
shift/reset in Scheme 48 uses a version of the *abort primi-
tive that discards its entire continuation before calling the meta-
continuation. This enables the garbage collector to reclaim more
unreachable continuation frames. However, this optimization does
not affect the run-time performance of the benchmarks: The dead
frames just reside in the heap, and the program never touches them.
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Figure 17. Continuation frames copied for the thread bench-
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7 Other Implementation Strategies

The incremental stack/heap strategy employed by Scheme 48 is
not the only common implementation strategy for continuations in
the presence of control operators. The main attractive alternative
implementations are the gc strategy, the Hieb-Dybvig-Bruggeman
strategy, and the stack/heap strategy, along with the simple-to-
implement stack strategy [5]. This section briefly reviews how the
results obtained for this paper carry over to these alternatives.

7.1 The GC Strategy

Implementations using the gc strategy keep all continuations in the
heap, relying on a fast garbage collector and compile-time opti-
mizations for a fast implementation. The strategy is not a zero-
overhead strategy in the sense of Clinger et al. [5], meaning that it
incurs overhead for all programs over stack-based strategies.

In the gc strategy, call/cc as well as reflecting a continuation are
especially fast and incur only small constant run time. In particu-
lar, call/cc involves no copying. In contrast, a direct implementa-
tion of shift/reset would need to copy continuation frames corre-
sponding to a composable continuation, which likely makes a direct
implementation more expensive in terms of run time than the indi-
rect implementation. The only potential savings are space savings
due to not retaining dead meta-continuations (see Section 2).



7.2 The Hieb-Dybvig-Bruggeman Strategy

The Hieb-Dybvig-Bruggeman strategy [17] represents continua-
tions as linked lists of stack segments. When the current stack seg-
ment overflows, the system simply allocates a fresh one, linking it
to the previous segment. Call/cc creates a small object pointing
to the current frame within a stack segment. It then splits the seg-
ment by installing an underflow continuation frame, similar to the
incremental stack/heap strategy. Reflecting the continuation also
works as in the incremental stack/heap strategy, by copying a por-
tion of the captured continuation into the current stack segment. As
in the gc strategy, call/cc itself is a constant-time operation. On
the other hand, reflecting a reified continuation involves overhead
similar to the incremental stack/heap strategy.

A direct implementation of shift/reset would create a stack seg-
ment corresponding to the reified composable continuation, termi-
nating the link at the bottom. The system would reflect the contin-
uation by making a copy of the stack segment and setting its link
pointer. It is hard to assess the tradeoffs of a direct implementation
of shift/reset in this case; this warrants further research.

7.3 The Stack/Heap Strategy

The stack/heap strategy differs from the incremental stack/heap
strategy in that it can return to a continuation residing in the heap
directly, instead of first copying portions back into the stack cache.
This means that a continuation resides either entirely within the
stack or entirely within the heap. The stack/heap strategy is also not
a zero-overhead strategy because each return needs to check where
the continuation resides. A direct implementation of shift/reset
in this context would be similar to the one presented here, with sim-
ilar performance tradeoffs as for the implementation of call/cc.

The stack/heap strategy incurs an additional overhead for procedure
call returns, as it needs to check whether the current continuation
resides in the stack or in the heap. Hence, it is not a zero-overhead
strategy. The stack/heap strategy seems comparatively rare in con-
temporary programming language implementations.

7.4 The Stack Strategy

In implementations of programming languages which do not sup-
port first-class continuations, the most common strategy is the
stack strategy that keeps all continuation frames on a global stack.
The stack strategy is even used in some systems with call/cc
(MzScheme, Bigloo and scm, for example.) This strategy effec-
tively discourages the use of call/cc. However, a direct imple-
mentation of shift/reset for the stack strategy is quite simple as
it can use a contiguous representation for reified continuations. In
particular, it does not have to deal with the stack-overflow situa-
tion. Hence, we expect the relative performance benefits of a direct
implementation with this strategy to be significantly greater than
with strategies allowing an efficient implementation of call/cc.
This in turn might make shift/reset attractive for programming
languages which do not support call/cc at all, such as Objective
Caml.

8 Related Work

Felleisen et al. originally came up with ideas for control operators
for composable continuations [12, 11]. Danvy and Filinski discov-
ered shift and reset in the course of their investigation of the

CPS transformation [8]. The seminal work on the CPS transforma-
tion and on shift/reset is Danvy’s and Filinski’s 1992 paper [9].
Filinski shows how to implement shift/reset via call/cc and a
mutable reference [13]. Danvy and Filinski note that shift/reset
coincides with Sitaram’s and Felleisen’s F- operationally [24, 8].
Moreau and Queinnec also employ marks on the stack to define
marker/call/pc, another pair of control operators for compos-
able continuations [23]. Gunter, Rémy, and Riecke investigate an-
other alternative approach to composable continuations via named
prompts [15]. They also mention the possibility of a direct imple-
mentation. To our knowledge, this has not been pursued to date.

Clinger, Hartheimer and Ost offer a comprehensive account of effi-
cient implementation strategies for first-class continuations [5] and
present detailed comparative measurements. Danvy formalizes two
stack-based implementation strategies for first-class continuations
by constructing special abstract machines which are proven equiv-
alent to a standard abstract machine for CPS programs [7].

The performance problems of indirect implementations of
shift/reset have been noted for a while [1]. In particular, im-
plementors of partial evaluators have been trying to replace the use
of shift/reset for performance reasons—this is possible for some
but not all applications of shift/reset in that context [25]. Oper-
ating systems research also has a long history of trying to over-
come the inefficiencies stemming from capturing and reinstating
complete continuations. Draves allows kernel functions to spec-
ify a composable continuation explicitly for a context switch in-
stead of forcing the kernel substrate to capture the complete con-
tinuation [10]. This corresponds to using shift/reset instead of
call/cc for context switching.

9 Conclusion

Shift and reset have long gained a critical mass of applications
to warrant first-class support in modern functional programming
languages. However, research on the pragmatics of supplying and
efficiently implementing shift/reset has only just begun. Our
work is a first indicator that direct implementations of shift/reset
as opposed to indirect ones using call/cc are indeed worthwhile:
the efficiency gains for applications of shift/reset are significant.
However, more research is needed, in particular into the pragmat-
ics of having call/cc, shift/reset, and threads in the same sys-
tem, as well as in alternative implementation strategies, possibly in-
volving more advanced garbage-collection technology or exploiting
representations derived from extended continuation-passing style.
Another area for future work is relating our direct implementation
formally to the semantic specification of shift/reset. Danvy’s
work [7] should provide a good starting point for this.
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