
Feel Different on the Java Platform:
The Star Programming Language

Frank McCabe
Starview, Inc.

fmccabe@starviewinc.com

Michael Sperber
Active Group GmbH

michael.sperber@active-group.de

Abstract
Star is a functional, multi-paradigm and extensible programming
language that runs on the Java platform. Starview Inc developed
the language as an integral part of the Starview Enterprise Plat-
form, a framework for real-time business applications such as fac-
tory scheduling and data analytics. Star borrows from many lan-
guages, with obvious heritage from Haskell, ML, and April, but
also contains new approaches to some design aspects, such as syn-
tax and syntactic extensibility, actors, and queries. Its texture is
quite different from that of other languages on the Java platform.
Despite this, the learning curve for Java programmers is surpris-
ingly shallow. The combination of a powerful type system (which
includes type inference, constrained polymorphism, and existen-
tials) and syntactic extensibility make the Star well-suited to pro-
ducing embedded domain-specific languages. This paper gives an
overview of the language, and reports on some aspects of its design
process, on our experience on using it in industrial projects, and on
our experience implementing Star on the Java platform.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Multiparadigm languages

General Terms Languages, Design, Human Factors

Keywords Multiparadigm Programming, Functional Program-
ming, Compilation, Actors

1. Introduction
The origins of Star lie in a Java-based platform developed by
Starview that was originally oriented towards complex event pro-
cessing applications [22]. Complex event processing (CEP) is a
family of techniques for processing very large streams of events,
typically in the form of “standing queries” against the events or
sets of pattern/action rules. StarRules—as it was known then—was
a language that allowed one to express CEP-style rules succinctly.
As the Starview Enterprise Platform is an OSGi-based framework
that runs on the Java platform, StarRules needed to run on the JVM.

As requirements evolved, CEP became just one of many ap-
plication areas that the Starview platform can address. The same

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPPJ’13, September 11–13, 2013, Stuttgart, Germany.
Copyright c© 2013 ACM 978-1-4503-2111-2/13/09. . . $15.00.
http://dx.doi.org/10.1145/2500828.2500837

pressures for generality in the platform lead to a greater interest in
extensibility and generality in the Star language.

One particular scenario played out several times: High-level but
specific features were forced to evolve to simpler but more gen-
eral ones. For example, initially Star had a high-level concurrency
model to allow multiple agents to process events with some degree
of parallelism. This model was elegant and had intuitive semantics,
but did not fit all applications that we wanted to support. We refac-
tored the concurrency model with a more general one, which also
had the effect of making the concurrency framework lower-level.
The replacement of specific but high-level features with more gen-
eral but lower-level ones occurred several times: for concurrency,
relational data structures and the rules formalism itself.

It was partly in response to this that we invested effort in making
the Star language extensible via an extensible grammar and macros.
In effect, we adopted a domain-specific language methodology for
the design of Star itself. Using the extensibility facilities we are
often able to present high-level features while basing them on more
general more low-level capabilities.

A number of other aspects have influenced Star’s design: Suc-
cessful software projects usually become team efforts. Further-
more, deployment targets will often extend to span a range of de-
vices from smart phones to multi-cluster supercomputers. Finally,
integration with other systems if often key to realizing the benefits
of a given system.

Another strong influence on Star was the social context: We as-
sumed that any given software project would involve many people.
This led us to conclude that features such as clear semantics, safety,
strong modularization, and in particular multi-paradigm support are
essential rather than being optional.

The foundations for safety in a programming language stem
from an expressive type system—the more expressive the type sys-
tem, the less the temptation to escape from it—and from an easy-to-
reason-about semantics. These requirements favor primarily func-
tional languages, especially when it comes to reasoning about par-
allel and distributed programming.

Star is not a pure language in the sense that it permits programs
with assignments and stateful objects. This is both because we wish
to permit programmers to build in ways that suits their needs and
because some algorithms are easier to express using mutable state.
However, the language encourages the programmer to program
more declaratively. Star enables procedural programming whilst
constraining features to avoid some pitfalls of global hidden state.

Contributions Star fits into a unique niche in the crowded land-
scape of languages for the JVM. Star’s contributions to this land-
scape are the following:

• Star is a unique and successful combination of paradigms and
concepts from a variety of languages, many of them from out-
side the Java platform. For each concept, we tried to choose the

best technology available that was both proven and fit well with
the overall language.

• Star provides a fresh approach to implementing embedded
domain-specific languages via extensible syntax and macros.

• Star provides a fresh look at the language infrastructure needed
to implement agents via a taxonomy of speech actions.

• Compiling Star to the JVM runs up against JVM restrictions
and omissions: We describe our solutions to the problem of
representing arbitrary-arity functions, and the JVM’s method-
size restriction.

• Even though Star feels very different from Java, the learning
curve for Java programmers is smooth.

While we expect the Star implementation to become open source
later in 2013, it is available now to interested parties upon request.

2. Language synopsis
Star is a statically typed, functional, and strict language.

• Statically typed means that Star, like Java, has a type system
that ensures at compile time that operations cannot be applied
to objects of invalid type at run time. Star’s type system is quite
different from Java’s however, and is much closer to the Haskell
type system in spirit. In particular, it supports type inference,
true parametric polymorphism, constrained polymorphism with
contracts (Star’s version of Haskell’s type classes), functional
dependencies, and existential types.

• Functional means that, in Star, functions are first-class values.
With the advent of Project Lambda in Java, this is less of
a distinction than it used to be. However, using functions in
Star is—due to native support in the type system and type
inference—much less painful than it is in Java 8, comparable
to Scala or Clojure.

• Strict means that Star’s evaluation model is like Java’s: When
evaluating a function call, a Star program first fully evaluates its
arguments before passing them and calling the function. This
distinguishes it from Haskell’s lazy evaluation.

Star is not purely functional like Haskell: it supports first-class
references, like ML. However, Star has, like Haskell and F#, a
monadic framework for describing effectful computations. (See
Section 4.11.) This is particularly useful for expressing concur-
rency and making efficient use of parallelism.

Star is very different from Java: It is not primarily object-
oriented, favors (purely) functional programming, and its syntax
has a feel quite different from that of Java.

Star is also quite different from most other languages on the Java
platform. The currently popular choices—Scala, Clojure, Kotlin,
Groovy—all are explicitly languages for programming the Java
platform, and the platform “shines through” in day-to-day program-
ming. In contrast, even though Star does offer Java interoperability,
Star’s design is significantly more independent from the constraints
of the host platform.

Many of the language elements in Star—including the operator
precedence grammar, much of the macro processing framework
and the query expressions—were explored in an earlier multi-agent
language called April [23]. Star, however, greatly extends the type
system of April. Where April had processes—which are similar to
Erlang processes—Star has actors and speech actions.

3. Texture
This section tries to convey a sense of what it feels like to program
in Star by describing aspects of its texture, things that are most im-

mediately apparent when using it, a few simple examples. Here is a
simple Star function definition with (hopefully) obvious semantics:

doubleMe(x) is x + x;

Here is another function calling the just-defined doubleMe:

doubleUs(x, y) is doubleMe(x) + doubleMe(y)

The following function uses a conditional to double numbers less-
or-equal than 100, and leave all other numbers alone:

doubleSmallNumber(x) is (x > 100) ? x | x*2;

Function definitions can use multiple clauses, pattern matching,
and guards:

lucky(7) is "LUCKY NUMBER SEVEN!";
lucky(x) default is "Out of luck, pal!";

factorial(0) is 1
factorial(n) where n > 0 is n * factorial(n-1);

Like most functional languages, Star supports “cons lists” natively.
Cons lists are singly-linked lists. Thus, there are two kinds of cons
lists: the empty cons list nil, and cons(x, xs) where x is the first
element, and xs is the rest of the list. For example, the cons list:

cons(4, cons(8, cons(15, cons(16, cons(42, nil)))))

has the numbers 4, 8, 15, 16 and 42 in it. Star supports an alternate,
more readable notation for cons lists too:

lostNumber is cons of { 4; 8; 15; 16; 42 }

Programmers can define functions over cons lists via pattern match-
ing:

listSum(nil) is 0;
listSum(cons(x, xs)) is x + listSum(xs);

The first clause is for lists with no elements. The second clause
computes the sum of the rest of the list via a recursive call, and
adds the first element to it.

Star supports higher-order functions. The following filter
function, familiar from other functional languages, selects those
elements of a list that match a given predicate:

filter(p, nil) is nil;
filter(p, cons(x, xs)) where p(x) is
cons(x, filter(p, xs));

filter(p, cons(x, xs)) default is filter(p, xs);

Except in a few special situations Star does not require that pro-
grammers annotate programs with types. Star has a sophisticated
type system that supports automatic type inference, which is why
the above examples show no explicit types. However, a program-
mer can supply type annotations, which often improve readability.
Here is a type annotation for filter:

filter has type for all t such that
((t) => boolean, cons of t) => cons of t;

In the type, t is a type variable that says that filter is polymor-
phic and works over list elements of arbitrary types. The function
accepts a function from t to boolean and a list of type cons of t,
i.e. a cons list with elements of type t. The filter function returns
a filtered cons list of ts.

Type annotations are not mandatory: As in other functional
languages based on Hindley/Milner-typing, functions are values,
and thus a naive approach to mandatory type annotations would
require them on every declaration. This, however, would make the
code quite verbose, and the cognitive cost of the resulting clutter
is not worth the benefit, as the experience with Java shows. For

example, types are often obvious in local and helper declarations.
Therefore, type annotations are always optional in Star.

4. Language overview
This section gives a semi-systematic overview of the Star language,
grouped by language aspect.

4.1 Syntax
Star’s syntax mostly eschews keywords that consist of special char-
acters, instead it relies on words to convey meaning. This makes the
language somewhat verbose in characters, but also tends to nudge
developers to make the code self-explanatory. This is in contrast
to, for example, Haskell, where special-character operators often
make programs concise at the cost of understandability for outside
readers.

Unlike many other languages, Star does not have a fixed gram-
mar. Instead, its syntax is specified via an operator-precedence
grammar [26]. This allows using functions as infix operators. Also,
it makes the syntax extensible by new syntactic constructs defined
via macros (see Section 4.13), without forcing the language to have
S-expression syntax.

4.2 Data types
Star has a rich language for defining compound data types building
on the heritage of ML and Haskell, with tuples, records, algebraic
data types, and type constructors:

Tuples The simplest way to combine several values into a com-
pound is via a tuple. For example, the tuple

(1971, "Mike Sperber", true)

is a tuple consisting of three values, with this type:

(integer, string, boolean)

In addition to providing “lightweight compound objects,” programs
often use tuples to return multiple values from a function. Note
that, unlike Haskell or ML, Star has an intrinsic notion of a multi-
argument function and does not rely on tuples or currying to pro-
vide them.

Records Records are compound values with named fields. Here
is an example:

type person is someone{
name has type string;
birthday has type date;

};

Star allows deconstructing record values both via pattern matching
or the familar dot notation (“p.birthday”).

Algebraic data types Algebraic data types allow expressing the
notion of sum types, where a value of the type can be one of several
kinds. Here is an example:

type accountTransaction is
payment(integer, string)

or withdrawal(integer, string);

This means what the wording suggests: An account transaction is
either a payment or a withdrawal, either of which carries an integer
(presumably the amount) and a string (presumably a description).
Functions can easily deconstruct values of such types via multiple
clauses and pattern matching:

value(payment(amount, desc)) is amount;
value(withdrawal(amount, desc)) is -amount;

Algebraic dataypes combine seamlessly with records:

type entity is
somebody{

name has type string;
birthday has type date;

}
or something(integer);

In the degenerate case, algebraic datatypes can express enumera-
tions:

type quality is good or bad;

Type constructors Star supports type constructors:

type tree of t is
leaf

or node(t, tree of t, tree of t);

Here, tree is a type constructor for binary trees that takes a type
parameter t for the type of the node labels.

Sequences Cons lists are defined with this type definition:

type cons of t is
nil

or cons(t, cons of t)

The cons-list literal

cons of { 4; 8; 15; 16; 23 };

is equivalent to this expression:

cons(4,cons(8,cons(15,cons(16,cons(23,nil))))))

The sequence notation cons of for cons lists is more convenient,
and generalizes to arbitrary data types. For example, the sequence
notation can also apply to the tree data type. The clumsy notation:

node(2, node(1, leaf, leaf), node(3, leaf, leaf))

could be written as follows, imposing an arbitrary order on the tree
elements:

tree of {1; 2; 3}

The sequence notation means that even collections with complex
internal structure can be written in a natural way by the client
programmer. This flexibility of notation is achieved by means of
a partnership of macros and contracts. See Section 4.6.

4.3 Theta environments
Star supports a general notion of local definition through theta en-
vironments1: A theta environment provides bindings for an expres-
sion or binding, and can contain definitions for values, types, con-
tracts, as well as imports and type annotations. Bindings can be
mututally recursive. Here is an example:

{
x has type integer;
x is 5;
type t is foo(integer) or bar(boolean);
f(x) is x + 1;

}

Theta environments can occur in a variety of contexts: let expres-
sions allow using the bindings from a theta environment in an ex-
pression:

let {
area is radius * 2 * pi;

} in area * height;

1 The term “theta environment” goes back to Star’s logic-programming
heritage, where formal semantics are often written using θ for variable-
binding environments.

Also, a program can use a restricted form of theta environment to
construct a record value:

type accountState is accountState{
balance has type () => integer;
deposit has type (integer, string) => accountState;
withdraw has type (integer, string) => accountState;
selectTransactions has type
((accountTransaction) => boolean) =>

cons of accountTransaction;
};

makeAccountState(currentBalance, transactions) is
accountState{
balance() is currentBalance;
deposit(amount, desc) is

makeAccountState(currentBalance + amount,
cons(payment(amount, desc),

transactions));
withdraw(amount, desc) is

makeAccountState(currentBalance - amount,
cons(withdrawal(amount, desc),

transactions));
selectTransactions(pred) is
filter(pred, transactions);

};

4.4 Functions
Like any other functional language, Star supports first-class func-
tions. Function expressions use the function keyword. Here is an
example:

filter((function (x) is x%2=1),
cons of { 2; 3; 5; 7 })

4.5 Pattern matching
Section 3 already showed some examples for pattern matching.
Star’s patterns include advanced features such as disjunction, reg-
ular expressions, guards, type casts and tests, and non-linear pat-
terns.

Unlike most other functional languages with pattern match-
ing, Star does not guarantee left-to-right matching of the function-
definition clauses. A “fall-through case” has to be marked with the
default keyword. Here is an example:

isEven(n) where n%2=0 is true;
isEven(_) default is false;

This encourages the programmer to specify pattern-matching defi-
nitions more declaratively than in languages like ML or Haskell.

4.6 Constraints and contracts
Recall the definition of the doubleMe function in Section 3:

doubleMe(x) is x + x;

Possible types for doubleMe would be (integer) => integer
or (float) => float. In principle, doubleMe could work on
any type as long as it supports addition. Star, similarly to Haskell,
allows generalizing doubleMe over both:

doubleMe has type for all t such that
(t) => t where arithmetic over t;

This type means that doubleMe works for all types t that support
arithmetic, as expressed by the contract constraint arithmetic
over t: A contract is similar to a Haskell type class: A contract
holds for a type if a set of pre-declared functions are available for

that type.2 In this case, the + function is part of the arithmetic
contract, and therefore incurs the arithmetic constraint in the
type of doubleMe.

Programs can define implementations of contracts by providing
function definitions. For example, the equality contract is defined
like this:

contract equality over t is {
(=) has type (t,t)=>boolean;

};

Here is an implementation of equality on a type for “users” that
have a unique id field. The example assumes that integerEquals
is a primitive function for comparing integers:

type user is user{
id has type integer;
name has type string;
address has type string;

};

implementation equality over user is {
u1 = u2 is integerEquals(u1.id, u2.id);

};

Contracts can be used for some of the same tasks as interfaces and
abstract classes in OO languages. Moreover, contracts allow defin-
ing implementations “after the fact”, separate from the definition
of type, and can feature the underlying type in any position, not
just the receiver of a method call. As compared with Java’s equals
method, the equality contract allows restricting the use of equal-
ity to types where the operation actually makes sense.

Programmers can also declare contracts over type constructors.
This is needed to define generic versions of advanced concepts
from functional programming, such as monads [37] or arrows [16].

Star supports some generalizations of contracts in the spirit
of Mark Jones’s theory of qualified types [18], namely multi-
parameter contracts and functional dependencies [19]. It also sup-
ports constraints that are not contract constraints: In particular, it
allows constraining types to record types that have certain fields.

4.7 References
Star does not support directly reassignable variables like Java or
Scala, but does provide first-class reference cells in the spirit of
ML. Cells representing mutable variables or fields of underlying
type t have type ref t .

A reference cell is simply an object with a single member: its
value. In ML, using reference cells is awkward as a program always
needs to explicitly dereference them, using the !c notation for
dereferencing cell c). Recognizing that this awkwardness would
make Star less palatable for programmers coming from Java, Star
automatically inserts cell dereference operations where needed.
Here is an example:

type account is account{
state has type ref accountState;

};
makeAccount(balance, transactions) is
account{
state := makeAccountState(balance, transactions)
};

deposit has type (account, integer, string) => ();
deposit(acc, amount, desc) do
acc.state := acc.state.deposit(amount, desc);

2 Star’s version of type classes differs from Haskell not in concept, but in
the specific set of features, and subtle aspects of its semantics.

Note that filling the state field in makeAccount does not require
explicitly constructing a cell, and the right-hand-side occurrence
acc.state in deposit does not require an explicit dereference.

In the few subtle cases where ambiguity prevents Star from
correctly divining where dereferences are needed, the ref keyword
(at the expression level) turns the inference off.

4.8 null safety
Null references are a notorious problem in Java programs. (And
not just in Java programs [15].) Hence, Star, like most functional
languages, eschwews null entirely. Instead, Star invites program-
mers to use the option type common in functional programming for
results that may be a value or “absent”:

type option of a is none or some(a);

4.9 Relations and queries
Star has a range of collection types besides cons lists. A relation is
similar to the SQL concept of a table. Programmers can write literal
tables using the sequence notation:

t is relation of {
(1971, "Mike Sperber", true);
(1926, "Elizabeth Windsor", false);
(1953, "Frank McCabe", false);
(1949, "Bruce Springsteen", true)

};

Star allows the programmer to formulate relational queries, gener-
alizing the list comprehensions familiar from other functional lan-
guages:

cons of {
all Who where
(Year, Who, _) in t
and Year>=1946 and Year<=1964
order by Year

}

This expression yields the expected result:

cons of {
"Bruce Springsteen";
"Frank McCabe" }

4.10 Satisfaction semantics of conditions
Conditionals and guards in Star work as in other functional lan-
guages for conditions that are straightforward boolean expressions:

(age > 18) ? "old" | "young"

However, conditions may also include unbound variables, in which
case they act as constraints on the unbound variables, as in where
clauses to queries. Evaluation tries to satisfy such constraint condi-
tions with appropriate bindings. Here is an example:

X in male and ("fred",X) in parent

This looks for a value for X in relation male that has a correspond-
ing tuple in relation parent, and, if used in a conditional, binds X
to that value in the consequent:

(X in male and ("fred",X) in parent) ? X | "unknown"

The satisfaction semantics enables elegant expression for many
“query conditions” and lets the programmer avoid awkward bind-
ing constructs.

4.11 Computation expressions
Monads are a convenient form to describe computations as first-
class objects [37] and enjoy widespread support in the functional-
programming community. Informally, a monad is a type constructor

M that can be applied to a type t, so that M of t is the type of
monadic computations of result type t: A monadic computation
is roughly an object that computes a value or values of type t.
A monad comes with two operations commonly called unit and
bind of the following types

unit has type for all t such that
(t) => M of t;

bind has type for all t,u such that
(M of t, (t) => M of u) => M of u;

The unit function allows, for a value, to produce a computation
that produces exactly that value, and bind allows composing a
computation with a function that looks at its value and produces a
new computation, based on that value. Monads are a tremendously
useful organizational tool for functional programs. A full treatment
is, unfortunately, outside the scope of this paper. We refer the
interested reader the extensive literature on the subject.

Writing monadic expressions using explicit calls to a monad’s
bind operation is awkward. Even Haskell’s and F#’s syntax for
computation expressions forces programmers to linearize their pro-
grams, which is still occasionally awkward. Star takes a slightly dif-
ferent syntactic approach to monadic expressions. Here is a simple
example using a result type for a simple expression interpreter:

type expr is
constant(integer)

or binary(binop, expr, expr);

type binop is add or sub or mul or div or mod;

type result of t is val(t);

This type can be made into a monad. A monadic computation
expression can use this type and has the following form:

result computation { ... }

The code in braces is similar to a theta environment, but can
mention valis for the monadic unit and valof to bind the value
of a computation.

type binfct is alias of
((result of integer, result of integer)

=> result of integer);

lookupFtab has type (binop) => result of binfct;

eval has type (expr) => result of integer;
eval(constant(i)) is
result computation {

valis i;
};

eval(binary(op, l, r)) is
result computation {

res is (valof lookupFtab(op))(eval(l), eval(r));
valis res;

};

Note that valof can appear anywhere, not just in a direct binding
form, as in Haskell’s <- or F#’s let!. The Star compiler performs
the transformation to monadic form automatically.

4.12 Concurrency and parallelism
High-performance computation requires making effective use of
multicore architectures. We eschewed event- and callback-driven
systems [36], and instead considered numerous high-level pro-
gramming paradigms for multithreaded programming. We found
two of them particularly attractive because of their generality and
composability, and have implemented them in Star:

Monadic combinators (for a monad called task) for expressing
asynchronous and parallel computations, and combining their
results [35].

Concurrent ML (CML) for orchestrating complex choreogra-
phies in concurrent programs [29].

In particular, CML won out over the join calculus [11], which
is similarly expressive but—we felt—not sufficiently proven in
practical applications yet. We considered Scala’s approach of con-
structing event-driven programs via a combinator library [13],
but consider programming with our monadic combinators more
straightforward and convenient. While there is some overlap be-
tween the monadic combinators and CML’s combinators, providing
both paradigms in a single language provides some useful syner-
gies: The Concurrent ML substrate is implemented on top of the
monadic substrate. Established techniques for implementing CML
on parallel platforms [28] translate smoothly.

Here is a simple example for a stream filter using the CML
abstractions:

streamFilter(P, inCh) is
let {
outCh is channel();

loop() is task {
I is valof (wait for incoming inCh);
if P(I) then
perform send(outCh,I);

perform loop();
};
{ ignore background loop() }

} in outCh;

The streamFilter function accepts a predicate function and an
input channel, and returns an output channel: Its job is to accept
messages on the input channel, and forward those messages for
which the predicate returns true to the output channel.

The channel() call allocates a synchronous communication
channel called outCh. The filter runs as a background task imple-
mented in the loop function. This function waits for an incoming
message on inCh. It then checks the predicate, and conditionally
uses send to forward the message to outCh. (The perform con-
struct is shorthand for a valof that ignores the value of the expres-
sion.) It then loops. The background construct starts the process.

To our knowledge, the combination of monadic combinators
and Concurrent ML is quite unique. In particular, we are not aware
of any other monadic implementations of concurrency using a
trampoline on the JVM.

4.13 Macros
First-class functions go a long way towards enabling the program-
mer to express her thoughts in an idiomatic manner. Some instances
of abstractions as well as the construction of true domain-specific
languages require syntactic abstraction, however. Star allows the
definition of syntactic abstractions as macros.

For example, a type definition of promises might be as follows

type promise of t is promise(() => t);

A promise is a “delayed value” that is not computed upon creation,
but instead only when needed. The promise represents this value by
a nullary function that the program calls or “forces” when it needs
the value:

force(promise(mf)) is mf();

Creating a promise therefore involves creating a function, typically
with a function expression:

promise((function () is f() + g()));

As the function tends to appear many times in any program that
uses promises, it is convenient to abstract it into a new syntactic
form using a macro:

#delay(?exp) ==> promise((function () is ?exp);

This definition states that delay(f()+g()) is equivalent to the
above expression.

The combination of the extensible grammar, infix notation, and
macros, gives great flexibility to the syntax. For example, instead
of writing:

filter(isEven, cons of {3;4;5})

(where isEven is a function that returns true on even numbers,
false on others) we might prefer to write:

cons of {3;4;5} >> isEven

We can do this by defining >> as a new operator:

#infix(">>",900)

and defining a macro that maps a >> expression into an filter
application:

?S >> ?F ==> filter(F, S)

Arguably, this macro—with infix syntax and a name that consists
of special characters—is exactly what we complained about in Sec-
tion 4.1. Indeed, macros can obfuscate programs greatly. However,
when properly used, they can serve to enhance readability by re-
moving syntactic clutter and introducing notation closer to human
language. In particular, macros are powerful tools for introduc-
ing domain-specific notation into embedded domain-specific lan-
guages.

The macro language can expand more complex syntactic pat-
terns as well:

#(select all from ?P in ?S)# ==>
cons of { for P in S do elemis P }

Thus, Star’s macros are similar to Scheme’s syntax-rules [7] in
spirit, but are not hygienic.

The macro language is powerful enough to express complex
programs at the macro level. See Section 6.1.

Star’s approach to syntax and macros has some similarities
with Honu [27]: Honu’s parsing engine is also based on operator
precedence, and Honu, like Star, allows defining macros via pattern
matching over syntactic categories. In both Star and Honu, the set
of syntactic categories is extensible.

Unlike Honu, which interleaves parsing and macro expansion,
Star implements a strict pass separation between the two. This dis-
allows macros expanding into macro definitions or operator decla-
rations, but simplifies the syntactic model greatly.

4.14 Pattern abstractions
In Star, pattern abstractions are first-class values. In particular, they
can be used to declare views on algebraic data types such as in this
example for lazy sequences, represented by even streams [38]. The
example refers to the promise type from the previous section:

type evenStreamNode of a is
EvenNilC

or EvenConsC(a, evenStream of a);
type evenStream of a is alias of
promise of evenStreamNode of a;

evenConsP(x, xs) from
(p where force(p) matches EvenConsC(x, xs));

Now evenConsP(x, y) is a pattern that matches a non-empty
even stream, forcing it in the process.

4.15 Actors
Agenthood is often a useful metaphor in structuring large pro-
grams [39]. The intuition is that an agent represents a focus of
responsibility within a system: by structuring the system in terms
of who is responsible for what it can make large systems more
tractable.

Agents are typically designed to be ‘in charge of’ their own area
of responsibility and agents collaborate by ‘talking’ to each other.
The messages exchanged between agents are not just data: Agents
also communicate intentionality and distribute responsibility by
asking other agents to ‘do stuff for them.’ This amounts to the
power of speech.

The reason that agents are an effective metaphor is that it is eas-
ier to design an entity that has limited responsibility and concern as
well as speech. Furthermore, in a distributed system where agents
reside on different machines, some degree of self-responsibility is
necessary. Agenthood is also useful when the application program-
mer is tasked with modeling aspects of the world that are self-
actuated: for example when modeling the behavior of people or
of machines.

Star supports the implementation of agents with two key con-
cepts: speech actions and actors.

Speech actions were first investigated by Austin [3] in the
1940’s as a vehicle for understanding the role of speech in hu-
man society. Since that time the basic ideas have been progres-
sively formalized by Searle [33] and standardized in KQML [8]
and FIPA [9].

Within Star, a speech action can be viewed as a generaliza-
tion of a method call where the method to be invoked can be a
complete script or expression. Star supports three performatives:
notify—which corresponds to one entity informing another that
something has happened—query—which corresponds to a ques-
tion—and request—which corresponds to a request to perform
an action.

A notify is written:

notify acc1
with payment(1300, "paycheck")
on transactions;

This notify means that the transactions channel should handle
payment(1300, "paycheck"), or, in the terminology of speech
act theory:

Inform agent acc1 that payment(1300, "paycheck"))
has occurred.

The notify speech action does not explicitly refer to time. This is
consistent with the architectural principle of separation of concerns
given that there may be multiple senses of time: the time of the
occurrence, the time of its being noticed, or the time of this speech.

Here is an actor3 that can accept these notifys:

makeAccountActor() is actor {
var state := makeAccountState(0, nil);

on payment(amount, desc) on transactions do
state := state.deposit(amount, desc);

on withdrawal(amount, desc) on transactions do
state := state.withdraw(amount, desc);

};

3 Star’s actors should not be confused with what is arguably the original
definition of actor by Hewitt [1]. Hewitt actors are a representation of
concurrent programs; Star actors may or may not be concurrent.

The state variable holds the internal state of the actor. The two
event rules on . . .on define how the actor reacts to messages on the
transactions channel.

The actor can also contain function definitions:

makeAccountActor() is actor {
...
balance() is state.balance();
selectTransactions(pred) is

state.selectTransactions(pred);
};

A program can use these with the second kind of speech action—
the query. For example, to query an (augmented) account actor for
its balances one might use:

query acc1 with balance()

There is no special kind of rule within an actor that is used to
respond to query speech actions. Instead the response to the query
is determined simply by evaluating the whole expression relative
to the actor’s theta environment. Programmers usually assume that
query speech actions do not modify the state of the listener.

The final form of speech action request assumes that the
listener should do something. For example, we can ask an actor
to clear the balance and transaction history:

request acc1 to
{ state := makeAccountState(0, nil) }

Notice that the argument of a request is an action. It is possible for
the listener to the request to decline to perform this request. This
ability (or lack of) to not react to speech actions is a characteristic
of the responding actor.

The Star actor represents the simplest possible entity that can
respond to speech actions. In that sense, an actor is the simplest
possible mechanism for embodying responsibility. Other entities
may also receive speech actions: they only need to implement a
special speech contract.

There are other entities that also implement the speech con-
tract. In particular, concurrent actors are a variation on the basic ac-
tor that performs its actions on a separately executing task; see Sec-
tion 4.12. Moreover, the Starview Enterprise Platform expresses a
“model” for processing events in terms of ports, which are a variant
of actors which may be wired up separately from their construction
with port adapters. Port adapters allow queries to be forwarded, to
be split into sub-queries to be answered by different components
and allow speech actions to be translated on-the-fly to facilitate the
necessary ‘gluing’ together of components written by different peo-
ple. Moreover, the platform special features adapters that translate
between internally generated speech actions and external services
such as databases or web services.

An agent could be seen as being the simplest entity that both
responds to speech actions and has some awareness of its own goals
and activities. Thus actors and agents span a range of scales from
the very small to the very large: but with a unified representation
of ‘units of collaboration’: the speech action. In particular, Star
actors are able to operate on a reified representation of query and
request speech actions, similar to (but developed independently
from) LINQ’s approach [24].

4.16 Java interoperability
Given that Star operates on the JVM platform, a certain amount of
interoperability between Star and Java is essentially free. Unfortu-
nately, the differences in semantics between Star and Java are suffi-
ciently deep that transparent interoperability is effectively impos-
sible. However, Star does permit Star programs to access libraries

written in Java and conversely, a Java program may access func-
tions and data types written in Star.

In practice, interoperability of data is limited to so-called con-
tainer classes and interoperability of functions is limited to stati-
cally defined Java functions.

5. Platform issues
As Star is so different from Java, and the JVM is primarily de-
signed to support Java, compiling Star to the JVM meets some sig-
nificant impedance mismatches and difficulties. This section gives
an overview of the issues.

5.1 Representation of functions
The JVM does not directly permit a function to exist on its own:
There are only methods that must be associated with classes. Nor
do Java methods have an intrinsic concept of free variables.

Thus, this simple Star program:

K(X) is (function(Y) is X)

is not directly possible on the JVM because the K function returns
a function, which is not a first class value in Java.

We use a fairly common technique for representing Star func-
tions: each function is represented as a class with a method called
enter to represent the function.

Borth K and the anonymous function embedded within it are
represented as classes. The following Java code paraphrases the
JVM code that the Star compiler generates:

class K456 implements function1_tV_function1_tV_tV{
IValue enter(IFunction X){
return new F34568(X);

}
}
class F345 implements function1_tV_tV{

IFunction X;

F345(IFunction X){
this.X=X;

}
enter(IValue Y){
return X;

}
}

The free variable X that is part of the anonymous function is repre-
sented internally as an instance variable of the F345 class.

The compiler use a munged name K456 to denote the class that
implements the K function because Java’s name scoping rules do
not map directly to Star’s scoping rules. Furthermore, class files
contain references to other classes as specially formatted strings so
we need to treat Star identifiers with some care on the JVM.

The function1 tV tV and function1 tV function1 tV tV
interfaces are synthesized to represent the erased Java types that
Star programs process. The IValue interface denotes any valid Star
value and the IFunction interface denotes any Star function.

The Java type signature for the enter method tries to capture as
much as possible of the original Star types as possible. In particular,
if a function is defined to take int arguments, then its signature (of
a function plus that accepts and produces integers) will reflect this:

class Plus456 implements function2_int_int_int {
int enter(int X,int Y){
return X+Y

}
}

However, even though Java 5 and onwards have some concept of
type variables, the JVM’s understanding of types remains at Java 1
levels. This means that some combinations are difficult to arrange
for. For example, the following expression is legal Star:

K(plus)

However, the signature for plus does not match the permitted sig-
nature for the argument of the K456 class. This expression, which
is rendered:

K456 K = new K456();
Plus456 P = new Plus456();
K.enter(P);

is not legal Java because of the differences in signatures. To ease
this problem, the Star compiler constructs a cascade of interfaces
for each function class: each is more general until something fits.

One of the unfortunate side-effects of this mismatch is that the
Star compiler must generate many extraneous type cast instructions
and must generate additional copies of the enter method for dif-
ferent signatures:

class K456 implements function1_tV_function1_tV_tV,
function1_tV_tV,
IFunction ...

class Plus456 implements function2_int_int_int,
function_2_tV_tV_tV,
IFunction ...

The Star classloader uses a special classloader that ensures that,
even though multiple identical synthesized interfaces may be gen-
erated, only one copy of each synthesized interface code is actually
loaded.

In addition to the specialized signatures, the Star compiler con-
structs a completely generic entry point that can handle any legal
Star sequence of values:

class K456 implements ... {
IValue enter(IFunction X) { ... }
IValue enter(IValue ... args){

return enter((IFunction)args[0]);
}

}

In most situations the compiler can avoid invoking this generic en-
try point; but it is still used more often than is desirable. Conse-
quently, the semantic mismatch between Star and Java shows up
in a large amount of fundamentally extraneous code that must be
generated to the JVM’s internal verifier.

5.2 Proper tail calls
A staple complaint of functional programmers on the JVM is the
lack of proper tail calls [30], which hurts Star programmers in
several ways:

• Programmers have to resort to using while loops and impera-
tive programming to implement iterative processes.

• While the implementation of notify speech actions via method
invocation is fast, it also does not support unbounded transfer
of messages. This requires special care on the part of the pro-
grammer when using notify.

Unfortunately, no language on the JVM has found an satisfactory
solution to this problem: Most, like Star, offer specialized looping
constructs. Scala offers local tail calls via an annotation. We may
implement local tail recursion to alleviate the worst of the prob-
lem, but do not expect a general solution until the Java platform
supports proper tail calls natively, something that has been under
consideration since at least 1996 [34].

5.3 JVM-level threads
The sophisticated programming techniques supported by Star for
concurrent and parallel programs (see Section 4.12) rely on an
unbounded and large number of threads. Unfortunately, the JVM
imposes significant penalties on programs that use many JVM-level
threads [12]: Each threads takes up a significant amount of storage,
creating a new thread is expensive, the total number of threads that
a program can create is bounded, and, perhaps most seriously, a
JVM thread cannot be garbage collected unless its execution has
terminated.

Unfortunately, a typical CML programs allocates many threads,
and thus essentially assumes that threads are cheap to create, and
that a single program can allocate an unlimited number of them.
This precludes using JVM threads directly as CML threads.

Fortunately, the monadic approach for concurrency and paral-
lelism helps solve this problem: Star uses its own, cheap thread
representation. The system easily scales to 100.000s of “green
threads”.

The Star compiler transforms computation expressions into
monadic form [4]. (See Section 4.12.) This transformation of task-
computation expressions to monadic form makes the continuations
of synchronizing calls explicit, and turns them into tail calls. This
enables Star to reify the context of an asynchronous continuation.
In particular, when a synchronizing computation needs to block,
it returns immediately instead of blocking the underlying JVM
thread. A Star scheduler provides a trampoline to multiplex sev-
eral computations onto a single JVM thread, and makes the context
switch between them extremely fast. This technique borrows from
F#’s implementation of the Async monad [35]. A Star program,
upon startup, only allocates JVM-level threads to the extent needed
to exploit parallelism, and one of its own schedulers on each of
these JVM threads.

The monadic transformation comes at a cost, as it converts lin-
ear code into a chain of function calls, which slows down execution.
However, this cost is local to computation expression, and mainly
occurs at blocking calls, where the program would need to suspend
or block anyway. Still, this technique effectively makes the pro-
gram perform tasks that properly belong in the domain of the VM
itself, and that the VM could address more efficiently.

5.4 Size restrictions
Compilation to the JVM is complicated by further restrictions:

1. The JVM only supports methods up to 64k bytes of code.

2. A JVM method can only have up to 255 parameters.

The restrictions are acceptable for most directly hand-written meth-
ods. (There are, however, numerous real-world examples in various
JVM languages that had be to be rewritten to meet these restric-
tions.) However, practical uses of Star’s macros effectively produce
machine-generated code that exceeds those limits quite often.

The method-size limit is the more immediately painful restric-
tion.4 We chose to mediate the problem by splitting large methods
into multiple smaller ones. The necessary transformation would be
easier to perform at the source-code level, but the compiler lacks
information about the size of the generated byte code at that stage,
and keeping size-estimate code in synch with the actual code gener-
ation poses maintenance problems we were not prepared to handle.

Instead, we split methods at the byte-code level using a general
extension of the ASM [6] byte-code generation engine:5 When

4 It is also the most frustrating restriction, as the JVM class-file format could
accomodate larger methods with very little modification.
5 The extension is available at http://bitbucket.org/sperber/
asm-method-size. It is completely transparent, and could work for any
compiler using ASM to generate JVM byte code.

ASM detects that the generated code for a method is too large, it
invokes the splitter, which splits it into several methods.

To that end, the splitter constructs a flowgraph, computes cycle
equivalence on the graph [17], and uses it to break out sub-trees
of the tree of strongly-connected components of the flowgraph that
have no backedge going over them; it then moves these sub-trees
into separate methods and generates calls to them.

The generated call transfers the current local-variable frame
and the stack over to the split-out method. These can get large
and frequently hit the other restriction of only 255 parameters for
a method. (In rare cases, we have also hit the restriction on the
signature size.) This in turn has forced us to implement a liveness
analysis on the frame to cut down on the size of parameters passed.

The process just described is effective for most Star programs
that run into the method-size restriction. Still, the splitter fails on
programs that have large loop bodies, as the back edges would
necessitate transferring control back and forth between the split-
out methods. This in turn is not possible on the JVM because of the
lack of proper tail calls. Using a trampoline for the control would be
prohibitely expensive, as the program would have to allocate heap
objects to hold the frame contents.

To successfully handle a larger set of programs, we plan to ex-
tend the splitter to split out methods “in the middle” that correspond
to subexpressions in the original program. This will require a more
sophisticated data-flow analysis an analysis of the flowgraph.

6. Experience
This section highlights two applications developed Star. One is an
embedded DSL for transforming database transaction, the other is
an application framework for semiconductor-fab scheduling. An
additional subsection describes our experience with Java program-
mers transitioning to Star.

6.1 Transforming database transactions
One of the most common yet most painful exercises in program-
ming applications is transforming data from one format to another.
This is especially so in the context of database programming be-
cause the natural data structures present in databases are so differ-
ent to the natural structures available in programming languages.

For example, consider the humble invoice. Abstractly, one can
consider an invoice to be a pair consisting of information about the
invoice itself, who the customer is, the date of the transaction, and
a collection of line items. Each line item details the item purchased,
its quantity and price. Here is a corresponding Star type:

type invoice is invoice{
customer has type Customer;
invoiceDate has type date;
items has type cons of lineItem;

};
type lineItem has type lineItem{
SKU has type skuType;
quantity has type integer;
price has type float;

};

The problem is that databases typically cannot represent invoice
data in this way because a tuple in a table may not contain another
table, only a reference to it. On the other hand, databases are often
the preferred method for storing invoices.

Star’s query sub-language—which has some similarities to
LINQ—allows us to express the essence of the mapping between a
relational representation of invoice data and a invoice represen-
tation as a query expression. For example, a list of recent invoices
may be constructed using the query:

cons of {
invoice{
customer = C; invoiceDate=D;
items = cons of {

all { lineItem{ SKU = S; quantity=Q; price = P}
where dbItem{ SKU=S; quant=Q; price=P;

invNo=invId} in dbItems} }
} where dbInvoice{ invNo=invId;

cust=C; date=D} in dbInvoices
and D>=yesterday;

where dbItems and dbInvoices are the appropriate names of
tables in a relational database. The complexity in this query arises
from the mapping between the relational view of the database and
the ‘object view’ we desire. Notice how the foreign key invNo is
crucial in connecting the two tables but is not itself present in the
final result.

Queries can be embedded in speech actions. This allows them
to be processed either as regular Star expressions, to be translated
into SQL and processed by a normal SQL database, or to forward
the entire speech action to another agent for processing.

However, mere queries do not address all issues involved in
integrating an invoice processing application with a database. A
typical application needs continual access to its evolving state.
Querying the database periodically has severe performance and
correctness issues.

What is also needed is a way of mapping updates as they occur
in the database to updates in our invoice structure. We can achieve
this may employing a transformer actor:

invoiceTransformer is transformer{
invoice{
customer = C; invoiceDate=D;
items = all { lineItem{

SKU = SKU; quantity=Q; price = P}
where dbItem{ SKU=SKU; quant=Q; price=P;

invNo=invId} in dbItems }
} in invoices if

dbInvoice{ invNo=invId; cust=C;
date=D; } in dbInvoices and

D>=yesterday
};

(We have elided some minor details here for the sake of brevity.)
This invoiceTransformer actor will accept updates from a

source in the form of insertions, deletions and updates to tuples in
the dbInvoices and dbItems relations and transform them into
corresponding updates to the invoices relation.

Notice that the query that represents the mapping remains fun-
damentally the same as for the normal query. But the process-
ing that is implied is quite different: in the case of the query the
Star query is translated into an SQL query for processing by the
database; in the case of the transformer updates in the underlying
tables are mapped to updates in the Star data structure.

In effect, the query represents an Object-Relation mapping and
the transformer represents a Relation-Object mapping. The former
is similar in spirit to Spring’s Hibernate; the latter does not have a
widespread counterpart.

Both the query and the transformer are realized as extensions to
Star using the macro language. Translating a query may involve a
fairly radical transformation. For example, this query condition:

dbInvoice{invNo=invId;cust=C;date=D} in dbInvoices

is evaluated using satisfaction semantics (See Section 4.10.) Its
compilation to regular evaluation involves a semantic shift.

The transformer involves another shift in semantics. In addi-
tion to the satisfaction semantics, the order of evaluation is also

changed: from a top-down query evaluation to a bottom-up update-
oriented semantics. We employ an approach similar to RETE [10]
to achieve this transformation.

The result of using such transformations can be spectacular:
This particular transformer replaces entire technologies and makes
the task of interacting with databases significantly easier.

6.2 Semiconductor-fab scheduling
One of the first applications of the emerging Starview Enterprise
Platform was ALPS (“Advanced Logistics and Planning System”),
a system for scheduling semiconductor fabs.

Semiconductor fabrication is a complex process, with modern
microprocessors going through (on the order of) 1000 production
steps going on over several weeks. As modern fabs are starting
to operate at 20nm resolution, the equipment is fickle and breaks
down or fails to operate at specification frequently. Moreover, many
fabs are moving to highly diversified product mixes. Consequently,
long-term planning of the fab operation is impossible, and schedul-
ing systems need to strike a delicate balance between the planning
required to make good decisions and simultaneously not relying on
the fab actually executing the plans generated.

The problem is further exacerbated by problems quite specific
to semiconductors: For example, some production routes—the se-
quences of production steps involved in making a product—involve
queue-time zones: A queue-time zone is a sub-sequence that, once
entered, has be completed within a certain time. If a wafer does not
complete a queue-time zone on time, chemical processes cause it
to “go bad.”

The latest iteration of the ALPS system “ALPS 4” makes use of
almost all of Star’s advanced facilities:

• ALPS uses Star’s advanced type system to provide high-level
compositional models of conceptual entities such as tools,
wafers, and routes.

• Parametric polymorphism is used extensively to abstract over
type definitions for concrete equipment, wafers, production
recipes etc., making ALPS into a modular framework.

• The framework is purely functional, which enables the compo-
sition and nesting of the fab (as well as simulated fabs) with
schedulers. Star enables purely functional programming with
its support for higher-order programming, and through provid-
ing high-performance functional data structures for maps and
sequences.

• Advanced concepts from functional programming enable the
modular composition of scheduling strategies: ALPS uses mon-
ads [37] to manage the “hope” that the fab will follow its
scheduling instructions, and arrows [16] to allow modular com-
position of scheduling strategies. Star provides general support
for both through type contracts (see Section 4.6) and computa-
tion expressions (see Section 4.11).

In particular, ALPS solves the queue-time problem through the
combination of its purely functional operation and the composable
scheduler framework: Whenever ALPS encounters a wafer about to
enter a queue-time zone, it starts a recursive speculative simulation
of the system, and monitors the wafer to see if it would successfully
completes the queue-time zone. Depending on the result, it lets the
wafer enter or delays it.

Full speculative simulation is not possible with traditional
scheduling systems used in the industry: A typical system operates
on a live, multi-gigabyte database containing the fab state. Thus
speculative simulation would entail copying the database state or
snapshotting over longer sequences of transactions, each of which
would be prohibitely expensive.

6.3 Transition from Java
Star is radically different from Java: It has none of the classic
object-oriented program elements such as classes and objects.
Moreover, Star programs typically rely on functional programming
and speech actions instead of method invocations and mutable vari-
ables. Despite the differences, most Java programmers that have
used Star have found the transition surprisingly easy. We do not
have enough data to present an empirical analysis. However, here
are some anecdotes from Star users reporting on the transition:

• As the basic organizational unit of a Java program is the class,
Java is all about nouns. However, business problems are mostly
about verbs.

• While Star does not have classes and objects, actors arguably
solve the same problems that (at least the original notion) of
objects solves: They receive messages and manage internal state
in response to those messages. Speech actions are more general
flexible than mere message invocation. Moreover, actors avoid
the problems commonly associated with inheritance.

7. Comparison with other JVM languages
Today, many production-level language implementations are avail-
able for the Java platform, including a number of functional lan-
guages and languages supporting functional features. At the time
development on Star started, the language landscape on the JVM
was considerably more scarce, and many languages in common us-
age today were not yet production-ready. While originally prag-
matics dictated developing a new language, Star still occupies a
unique niche. In particular, most languages on the Java platform
specifically target the JVM and thus retain a strong “JVM smell”
even at the surface. Star, on the other hand, retains an independent
feel. This section compares Star with other popular languages on
the JVM that have functional elements.

Clojure Clojure [14] is also a functional language, with supe-
rior support for persistent data structures, syntactic extensibility
through macros, and concurrent programming with transactional
memory. Support for macros in Star is similarly powerful. In con-
trast, Star features an “algebraic” syntax without sacrificing the
generality of Lisp-style macros. Star takes a different approach
to concurrency and parallelism through the asynchronous-task
monad. The biggest difference is Star’s sophisticated type system.

Scala Scala [25] is another functional language for the JVM, with
a powerful type system integrating subtyping, parametric polymor-
phism, existentials and a limited amount of type inference. Scala
integrates object-oriented and functional features, whereas Star fo-
cusses on functional programming. This lets Star avoid some of
Scala’s complexities in the type system, and also makes for more
uniform support for type inference. For enabling embedded DSLs,
Scala relies on a variety of ingeniously conspiring but separate
mechanisms: some implicit syntactic elements, block syntax, lazy
fields, implicits, to name some. In contrast, Star features uniform
syntactic extensibility through its macro system.

Kotlin Kotlin [5] is a JVM language developed by JetBrain, the
maker of the Java IntelliJ IDE. Kotlin features some functional con-
structs, notably first-class functions and pattern matching. How-
ever, its main design motivations are to improve upon Java, not to
create a radically different language. Thus, it is still primarily an
imperative object-oriented language, not a functional one. Kotlin
shares Star’s concern for null safety. Also, Kotlin’s string templates
are quite similar to Star’s string interpolation.

Groovy Groovy [20] started out as a dynamically-typed, more ag-
ile alternative to the JVM. As such, it features a more compact no-
tation than Java for many programs, and also first-class functions.

Groovy does offer optional static typing as well. Thus, like Kotlin,
it is primarily an imperative object-oriented language. Its dynamic
nature further distinguishes it from Star. Like Kotlin, Groovy shares
Star’s concerns about null, albeit through a null-checking operator,
and offers string interpolation.

8. Future development
Star continues to evolve. This section sketches some of the plans
for nearer-term improvements to the language:

Macros defined by code Star is already homoiconic; it has a built-
in representation for Star syntactic forms, and allows a program to
quote an expression to obtain this representation.. We are working
towards allowing macro definitions written as “regular” Star code
that operate on this representation.

High-level distributed programming We are developing an in-
frastructure for building high-level distributed applications, com-
bining the basic model of Erlang [2] with CML-style combinators.
In contrast to Erlang, we are assembling the high-level communi-
cation constructs with a combinator library to give the programmer
more control over the communication behavior of message chan-
nels. We are also developing a library for distributed collections.

invokedynamic In Java 8, it may be feasible to use invokedy-
namic [31] and the LambdaMetafactory class to create closures.
Significant technical challenges remain, however.

Modules and Larger Programs The program-structuring tools
available Star are already quite powerful. However, it currently pro-
vides only a flat namespace of packages to organize larger pro-
grams. A future extension to Star may include ML-style mod-
ules [32] coupled with a more explicit Agent-oriented architecture
for structuring the dynamic aspects of large applications. It is an-
ticipated that both ML-style modules and agents can be layered on
top of the existing language strictly as a DSL implemented using
Star’s existing features of macros and contracts.

9. Conclusion
Star is a coherent, general-purpose programming language that
combines elements from a wide variety of existing languages as
well as adding innovative elements of its own. Star inherits func-
tional programming in general, a Haskell-style type system, an F#-
style monad for parallel computations, and Concurrent ML for or-
chestrating concurrent and parallel applications. Innovation high-
lights are Star’s approach to syntax and macros, its speech ac-
tions for implementing agent systems, and its combination of rela-
tions, queries and satisfaction semantics. Through its sophisticated
type system, extensible syntax, and macro system, Star is uniquely
suited to implemented embedded DSLs. We have used Star to im-
plement significant industrial applications, which have informed
the design process. Star is an almost complete departure from Java
and feels quite different to developers. Nevertheless, developers
coming from Java face a surprisingly shallow learning curve.

Still, the JVM platform poses significant challenges that make
compilation of Star to the JVM hard, chief amongst them the lack
of proper tail calls, and size restrictions in the JVM code. The
Star implementation would benefit significantly if these restrictions
were lifted or at least alleviated.

Acknowledgements We thank David Frese for implementing the
task monad and the CML substrate. Andreas Bernauer provided
valuable feedback on a draft of this paper. Also, the comments from
the PPPJ reviewers were very helpful in producing the final version.

References
[1] G. Agha and C. Hewitt. Concurrent programming using actors. In

A. Yonezawa and M. Tokoro, editors, Object Oriented Concurrent
Programming. MIT Press, 1987.

[2] Joe Armstrong, Robert Virding, and Mike Williams. Concurrent
Programming in Erlang. Prentice Hall, NY, 1993. ISBN 0-13-285792-
8.

[3] John L. Austin. How to do things with words. Oxford : Clarendon,
1962.

[4] Annette Bieniusa and Peter Thiemann. How to CPS transform a
monad. In Proceedings of the 18th International Conference on Com-
piler Construction: Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2009, CC ’09, pages 266–
280, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-
00721-7.

[5] Andrey Breslav. Language of the month: Kotlin. Dr. Dobb’s, http:
//www.drdobbs.com/jvm/language-of-the-month-kotlin/
232600836, January 2012.

[6] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: a code
manipulation tool to implement adaptable systems. In Adaptable and
extensible component systems, Grenoble, France, November 2002.

[7] William Clinger and Jonathan Rees. Macros that work. In Proceed-
ings 1991 ACM SIGPLAN Symposium on Principles of Programming
Languages, pages 155–162, Orlando, FL, January 1991. ACM Press.

[8] T. Finin, J. Weber, G. Wiederhold, M. Genesereth, R. Fritzson, D. Mc-
Kay, J. McGuire, R. Pelavin, S. Shapiro, and C. Beck. DRAFT
specification of the KQML Agent Communication Language. The
DARPA knowledge sharing initiative External Interfaces Working
Group, 1993.

[9] FIPA. The foundation of intelligent physical agents. http://www.
fipa.org/.

[10] Charles Forgy. Rete: A fast algorithm for the many pattern/many
object pattern match problem. Artificial Intelligence, 19(1):17–37,
1982.

[11] Cédric Fournet and Georges Gonthier. The reflexive CHAM and the
join-calculus. In Proceedings of the 1996 ACM SIGPLAN Symposium
on Principles of Programming Languages, pages 372–385, St. Peters-
burg, FL, USA, January 1996. ACM Press. ISBN 0-89791-769-3.

[12] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David
Holmes, and Doug Lea. Java Concurrency in Practice. Addison-
Wesley, 2006.

[13] Philipp Haller and Martin Odersky. Scala actors: Unifying thread-
based and event-based programming. Theoretical Compututer Sci-
ence, 410(2-3):202–220, 2009.

[14] Rich Hickey. The Clojure Programming Language. In Proceedings of
the 2008 Symposium on Dynamic Languages. Paphos, Cyprus, 2008.

[15] Tony Hoare. Null references: The billion dollar mis-
take. http://www.infoq.com/presentations/
Null-References-The-Billion-Dollar-Mistake-Tony-Hoare,
August 2009. Talk at QCon 2009, San Francisco.

[16] John Hughes. Generalising monads to arrows. Science of Computer
Programming, 37:67–111, May 2000.

[17] Richard Johnson, David Pearson, and Keshav Pingali. The program
structure tree: Computing control regions in linear time. In ACM
SIGPLAN ’94 Conference on Programming Language Design and
Implementation (PLDI), Orlando, Florida, June 1994.

[18] Mark P. Jones. A theory of qualified types. In Bernd Krieg-Brückner,
editor, Proceedings 4th European Symposium on Programming ’92,
volume 582 of Lecture Notes in Computer Science, pages 287–306,
Rennes, France, February 1992. Springer-Verlag.

[19] Mark P. Jones. Type classes with functional dependencies. In Gert
Smolka, editor, Proceedings 9th European Symposium on Program-
ming, volume 1782 of Lecture Notes in Computer Science, pages 230–
244, Berlin, Germany, March 2000. Springer-Verlag. ISBN 3-540-
67262-1.

[20] Dierk König, Guillaume Laforge, Paul King, Cédric Champeau, Ham-
let D’Arcy, Erik Pragt, and Jon Skeet. Groovy in Action. Manning,
2nd edition, 2013.

[21] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java Virtual
Machine Specification: Java SE, 7 Edition. Always learning. Prentice
Hall PTR, 2013. ISBN 9780133260441.

[22] David Luckham. Event Processing for Business: Organizing the Real-
Time Enterprise. John Wiley & Sons, Hoboken, New Jersey, 2012.
ISBN 978-0-470-53485-4.

[23] F.G. McCabe and K.L. Clark. April - agent process interaction lan-
guage. In M. Wolldridge N. Jennings, editor, Intelligent Agents, Lec-
ture Notes on Artificial Intelligence, vol 890. Springer-Verlag, 1995.

[24] Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ: reconciling
object, relations and XML in the .NET framework. In Proceedings
of the 2006 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’06, pages 706–706, New York, NY, USA, 2006.
ACM. ISBN 1-59593-434-0.

[25] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala.
Artima, 2nd edition, December 2010.

[26] Vaughan R. Pratt. Top down operator precedence. In Proceedings
of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles
of programming languages, POPL ’73, pages 41–51, New York, NY,
USA, 1973. ACM.

[27] Jon Rafkind and Matthew Flatt. Honu: syntactic extension for alge-
braic notation through enforestation. In Klaus Ostermann and Walter
Binder, editors, GPCE, pages 122–131. ACM, 2012. ISBN 978-1-
4503-1129-8.

[28] John Reppy, Claudio V. Russo, and Yingqi Xiao. Parallel Concurrent
ML. SIGPLAN Not., 44(9):257–268, August 2009. ISSN 0362-1340.

[29] John H. Reppy. Concurrent Programming in ML. Cambridge Univer-
sity Press, 1999.

[30] John Rose. Tail calls in the JVM. Blog post, July 2007. https:
//blogs.oracle.com/jrose/entry/tail_calls_in_the_vm.

[31] John R. Rose. Bytecodes meet combinators: invokedynamic on the
JVM. In Proceedings of the Third Workshop on Virtual Machines and
Intermediate Languages, VMIL ’09, pages 2:1–2:11, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-874-2.

[32] Andreas Rossberg, Claudio V. Russo, and Derek Dreyer. F-ing mod-
ules. In Proceedings of the 5th ACM SIGPLAN workshop on Types in
language design and implementation, TLDI ’10, pages 89–102, New
York, NY, USA, 2010. ACM. ISBN 978-1-60558-891-9.

[33] J. R. Searle. Speech acts: an essay in the philosophy of language.
Cambridge University Press, 1969.

[34] Guy L. Steele. Tail calls on the JVM. Personal communication, May
1996.

[35] Don Syme, Tomas Petricek, and Dmitry Lomov. The F# asynchronous
programming model. In Proceedings of the 13th International Confer-
ence on Practical Aspects of Declarative Languages, PADL’11, pages
175–189, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-
642-18377-5.

[36] Rob von Behren, Jeremy Condit, and Eric Brewer. Why events are a
bad idea (for high-concurrency servers). In Proceedings of the 9th con-
ference on Hot Topics in Operating Systems - Volume 9, HOTOS’03,
Berkeley, CA, USA, 2003. USENIX Association.

[37] Philip Wadler. Monads for functional programming. In Advanced
Functional Programming, volume 925 of Lecture Notes in Computer
Science, pages 24–52. Springer-Verlag, May 1995.

[38] Philip Wadler, Walid Taha, and David MacQueen. How to add lazi-
ness to a strict language without even being odd. In 1998 ACM SIG-
PLAN Workshop on ML, pages 24–30, Baltimore, Maryland, Septem-
ber 1998.

[39] Michael Wooldridge. An Introduction to MultiAgent Systems. Wiley,
2nd edition, June 2009. ISBN 0470519460.

