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Abstract
This paper describes a simple and modular approach for adding
optimizing native-code compilation to Scheme 48, a byte-code im-
plementation of Scheme. The novelty of the approach is its reuse of
existing infrastructure, which enabled incremental and modular de-
velopment. Each part of the compiler is independently useful. We
developed the translator from byte code to native code incremen-
tally, throwing back to the virtual machine for any aspect we had
not yet implemented. Moreover, the translator is extremely simple,
relegating all serious optimization to a separate, optional pass opti-
mizing the byte-code and producing byte code as a form of portable
assembly code. The optimization pass, in turn, was built using a
preexisting general-purpose transformational compiler, which also
serves to compile the virtual machine source code (written in a sub-
set of Scheme) to highly efficient C. Our approach—using existing,
general infrastructure, modular structure, and incremental develop-
ment of the translation to native code—allowed us to produce a
working implementation with comparatively little effort. The im-
plementation achieves significant performance gains over both byte
code and unoptimized native code.

1. Introduction
Scheme 48 [18] is a byte-code implementation of Scheme [16] con-
structed with tractability and reliability as its primary design goal.
Its clear, modular structure, limited complexity and readable source
code make it an ideal platforms for experiments in programming-
language implementation. The work described in this paper extends
Scheme 48 by a simple native-code compiler.

Of course, the primary goal in implementing native code in a
byte-code system is improved performance. However, it was im-
portant to preserve the tenets of the existing code base—its sim-
plicity and modular structure—at the same time. This requirement
was not for purely esthetic or academic reasons: Our time for im-
plementing the system was limited and non-contiguous, as were the
people working on the code. Previous attempts to add native code
to the system had failed primarily because of excessive complexity,
which prevented that somebody else could take over maintenance
from the original developers.

The keys to the ultimately successful effort described here were
the following:
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• The compiler from byte code to native code is a mere translator
from the byte-code instructions to corresponding sequences of
native code, and thus extremely simple.

• Optimization is a separate pass that operates on the byte code.
• Existing components of the system were reused.

The last bullet deserves special attention:
The optimizer reuses the transformational compiler that nor-

mally compiles the virtual machine (VM). As the optimizer oper-
ates on the byte code, optimizations can be tested without involving
the native code. No new intermediate representations needed to be
developed, as is often the case in byte-code-to-native-code compil-
ers. Instead, the optimizer translates the byte code to the CPS rep-
resentation of the transformational compiler, optimizes on that rep-
resentation, and then translates back to byte code. For this to work,
it is crucial that the existing byte-code compiler of Scheme 48 is
extremely simple and generates very regular code (another conse-
quence of the overall design principle of simplicity), that lends it-
self to reconstituting the high-level structure of the original Scheme
code straightforwardly.

The simplicity of the native-code translator enables tight inte-
gration between the byte and the native code. In particular, the na-
tive code can always throw back to the VM for any parts not yet
implemented, or for run-time aspects of the VM’s operation: The
native code compiler simply skips code with instructions it cannot
translate yet. Changes to a subset of the instructions can be tested
without specifying native-code compilators and even without run-
ning the optimizer.

The simplicity of Scheme 48’s byte-code compiler has already
been exploited to obtain a run-time code-generation facility for
byte code. The same is possible with the native-code compiler, and
composing the byte-code combinators with native-code generation
yields native-code run-time code generation. Consequently, these
principles lead to a system architecture that keeps Scheme 48’s
traditional tractability, while making it easy to test and extend the
system.

Summarizing, the contributions of our paper are the following:

• We show that a simple system architecture enables adding a
native-code compiler to a byte-code system with comparatively
little effort.

• A general, tractable infrastructure for compiling and running
code enables significant code reuse.

• The resulting system achieves considerable performance im-
provements over the pure byte-code system, or pure non-
optimizing native-code compilation.

Overview Section 2 reviews the overall structure of the Scheme 48
system, including the components involved native code compila-
tion. It highlights the opportunities for reuse afforded by the archi-
tecture. Section 3 gives a very brief overview of the architecture



of the Scheme 48 virtual machine. Section 4 describes changes
made to the original VM to make native-code generation easier and
enable faster code. The byte-code optimizer is described in Sec-
tion 5. Section 6 describes the native-code compiler. Benchmarks
are in Section 7. Section 8 briefly describes how we have obtained
native-code run-time code generation from the components previ-
ously developed. Section 9 reviews some related work, Section 10
discusses directions for future work, and Section 11 concludes.

2. Component reuse in Scheme 48
This section gives a rough overview of the Scheme 48 component
architecture, emphasizing the places where code reuse happens.
Details on the operation of the new components—the byte-code
optimizer and the native-code compiler—follow in later sections.

Figure 1 gives an overview over the system architecture of
Scheme 48 [18]. Dotted arrows indicate code reuse. The system
began as a classic byte-code-based Scheme implementation with a
compiler from Scheme to byte code and a virtual machine (VM)
that interprets the byte code. However, the VM implementation
differs from many other VMs in that it itself is written in Scheme,
specifically in a subset called Pre-Scheme.

The VM can run as a normal Scheme program, and VM devel-
opers debug the system in that mode of operation. However, the
VM can also be compiled to a highly efficient C program by a
special compiler that ships the system—the Pre-Scheme compiler,
shown on the left. The Pre-Scheme compiler is an excellent illus-
tration for the theme of code reuse that runs through the system
and this paper: Its front end simply invokes the regular Scheme
front end of the byte-code compiler, which includes the Scheme 48
module system and the macro expander. The central part of the Pre-
Scheme compiler is essentially the Transformational Compiler [17]
of the T project [19]. The VM, the Pre-Scheme compiler, and the
byte-code compiler have been part of the system for a long time.
The byte-code optimizer and the native-code compiler are new.

Note that the Scheme front end used in the Pre-Scheme com-
piler as well as the Transformational Compiler itself are not spe-
cific to Pre-Scheme, but are part of a general compiler infras-
tructure for Scheme. Its distinguishing feature is the use of a sin-
gle CPS-based intermediate representation for almost all stages of
compilation. The Transformational Compiler performs significant
optimizations—among them significant partial evaluation, match-
ing up procedures and calling points, and pattern-directed code
simplification.

Another component that is reused several times is the byte-code
parser. It receives a byte-code code vector and a set of attribution
functions, essentially one for each opcode, and calls these attribu-
tion functions with the arguments of the opcodes, passing along
a state containing an arbitrary value. The byte-code parser learns
about the instruction format from a description that also guides the
instruction decoding in the VM. In the standard system, the disas-
sembler uses the parser to print a human-readable representation of
the byte-code. The new optimizer uses the parser in its front end.
The native-code compiler is actually nothing more than a set of
attribution functions for the parser.

The byte-code optimizer works by translating the byte code into
the intermediate representation of the Transformational Compiler,
using the Transformational Compiler to perform the actual opti-
mization, and then turning the CPS code back to byte code. Again,
a significant part of the system is reused in a different context.

The native-code compiler is new code, but is extremely simple.
It compiles the byte-instructions directly to native code, and per-
forms no analysis whatsoever. It reuses significant code from the
VM, in particular the protocol converter for procedure calls and re-
turns, and various other primitive operations. More importantly, it
can throw back to the VM for the handling of exceptions and in-

structions not (yet) handled by the native-code compiler. The latter
aspect was especially useful during development and allowed us
to run substantial programs in native code before the native-code
compiler even handled the full byte-code instruction set.

Figure 1 does not show how the source code of the byte-code
compiler was reused to generate combinators for run-time genera-
tion, and how the source code of the native-code compiler can sim-
ilarly be reused to obtain run-time code generation for native code.
This is not the main thrust of this paper, however. A brief overview
is in Section 8.

3. The virtual machine
The Scheme 48 virtual machine interprets a simple stack-based
byte-code instruction set.

3.1 Data representation and storage management
The tagged data representations are fairly standard for a Scheme
system: The system uses word-size descriptors to represent objects.
A descriptor can be a fixnum (representing a 30-bit integer), an
immediate object (a boolean or character value or the empty list),
or a stob descriptor, representing the address of a heap object. Heap
objects can be either all-binary or consist entirely of descriptors;
their header words contain type and size information.

Scheme 48 offers a choice of two garbage collectors, both of
which are precise and moving. The default collector is simple two-
space copier; the alternative is a more sophisticated and faster gen-
erational BIBOP-based collector whose design is based on Chez
Scheme’s GC [12]. Details of the VM data representation are de-
scribed elsewhere [18].

3.2 Continuation frames
For managing the continuation frames used in implementing pro-
cedure calls, Scheme 48 uses the incremental stack/heap strat-
egy [9]: Continuations are initially created on a stack cache
(we will use “stack” for short for the remainder of this pa-
per); they are copied to the heap on overflow or on capture via
call-with-current-continuation, and copied back on de-
mand by invocation.

The local variables of a procedure are kept on the stack. (The
byte-code compiler performs a standard assignment elimination
to replace assignment to local variables by operations on heap-
allocated cells.) Also, operands and intermediate results from sim-
ple primitive applications are kept on the stack.

3.3 Byte-code representation
The relevant data structures involved in byte code are closures, tem-
plates and environments. All are heap-allocated. A closure is a stan-
dard run-time representation of a procedure, consisting of pointers
to a template and an environment. The template is an artificial ob-
ject containing a pointer to the actual byte-code object as well as
literal values, debug data, and references to global variables used by
the procedure. The environment contains all non-local variables.

3.4 Instruction set
The VM instruction set mainly operates on the stack. It has a single
“accumulator” register *val* that typically contains an argument
too, and receives the result of a byte-code instruction. For example,
the + byte-code instruction accepts one argument on the stack,
another argument in *val*, and also leaves the result in *val*.

The VM also keeps a *code-pointer* register for the program
counter, a *stack* register that points to the top of the stack, and a
*cont* register to remember where the current continuation frame
starts on the stack. If the code associated with a closure needs
access to the environment and/or the template, these are pushed
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on the stack on entry to the procedure. The byte code then uses a
stack-indirect instruction to refer to individual values within
the template or environment.1

3.5 Procedure calls
Every procedure and continuation includes a protocol marker in-
dicating how it is to be invoked. Mostly this has to do with the
number of arguments expected and were they are stored. When in-
voking a procedure or continuation the invoking code checks that
the procedure or continuation has the expected protocol. If the pro-
tocols match, the procedure or continuation is invoked directly. If
they do not match, the invoking code jumps to a protocol conver-
sion routine that makes any adjustments needed or, if the protocols
are inherently incompatible, signals an error. The goal is to make
the common case, where the protocols match, fast, while still ac-
commodating the uncommon cases. Most of the complexity in the
protocol converter has to do with managing lists of arguments and
calling or returning between byte code and native code.

3.6 Interrupts
Interrupts are events that the VM asynchronously signals to the run-
time system by invoking an interrupt handler. Interrupts correspond
to signals sent by the operating system, completion of I/O transac-
tions, or completed garbage collections. A VM register contains the
set of pending interrupts as a bit mask. To guarantee that an inter-

1 Earlier versions of the virtual machine [18] also had registers for the
current template and the current environment.

rupt is handled within finite time, the VM checks on every call if
there is a pending interrupt. To speed up this test, it is combined
with the check for sufficient stack space also required upon each
procedure call: code that sets a bit in the interrupt mask also sets
the stack limit to -1. Then the next stack space test will fail and the
handler can recognize that actually an interrupt is pending. Check-
ing on every procedure call is sufficient in the case of standard byte
code as this code contains no backwards jumps. However, the op-
timizer must insert poll instructions as it may produce loops. A
poll can also simply check if the stack limit is -1 to learn that
there are pending interrupts.

3.7 Exceptions
The VM maintains a vector of exception handlers, one for each op-
code. The RTS may set this vector using a special opcode. When
the VM detects a failure executing an opcode, it sets up an excep-
tion continuation and continues the interpretation with the code of
the corresponding exception handler. The exception continuation
continues the execution with the instruction following the failure.

4. Streamlining the VM
The original VM architecture used linked environments allocated
on the stack and then copied to the heap when a closure was
created. The linked environments followed the lexical structure of
the program. This avoided the need for doing any live variable
analysis in the compiler.



The use of the stack followed directly from the source code.
The top of the stack was used for ordinary stack execution of ex-
pressions, with call arguments being pushed from right to left. Once
the arguments were complete, the procedure would be invoked and
would push its own lexical environment and a header onto the ar-
guments, forming them into an environment. For a non-tail call,
the values of the registers and a header were pushed on top of the
current value stack, forming a continuation. The stack thus con-
tained a set of continuations and environments, with links that al-
ways pointed down the stack. The stack would grow until a contin-
uation was invoked. A series of tail-recursive calls would eventu-
ally fill the stack with unreachable environments. Stack space was
reclaimed by copying the live environments and continuations to
the heap using the same mechanism as for call-with-current-
continuation. Consider the following example:

(lambda (a b)
(+ (f (+ a 1) (g (+ a 2)) (+ b 2))

1))

With the arguments pushed from right to left and no reordering of
calls, the stack contains the following values before the call to g:

a+2
continuation for (g ...)
a+1
continuation for (f ...)
b
a
continuation to (lambda (a b) ...)

The following intra-stack pointers appear:

a+2
return code for (g ...)
saved continuation
saved environment
saved template
a+1
return code for (f ...)
saved continuation
saved environment
environment header
saved template
b
a
continuation to (lambda (a b) ...)

Later, live variable analysis was added for determining the precise
environments needed for closures, along with the introduction of
explicit cells for set! variables. Closure environments were then
flat vectors, with no indirection. Once explicit cells were intro-
duced, it was no longer necessary for closures and continuations
to share the same environment structure. This avoided the need
for intra-stack pointers for environments. The architecture was also
changed to delay the creation of continuations until the time of the
call. Space was still reserved for the return code pointer, but the
pointer itself was not added until immediately before the call. This
maintained the frame as a single contiguous object and avoided the
need for intra-stack pointers to continuations. Continuations were
implicitly linked by being adjacent in the stack. Some other mi-
nor changes were also required, including pushing the called pro-
cedure’s environment and template on the stack instead of in VM
registers (which are not shown in the stack diagrams).

At the time of the call to g, the stack would now appear as:

a+2
return code for (g ...)
a+1
nil (saved space for the return code for (f ...))
template
b
a
continuation to (lambda (a b) ...)

To maintain the adjacency of continuations, arguments to tail-calls
were copied down over the current stack frame before invoking the
tail-called procedure. This is less efficient than the previous stack
GC, but more than outweighed by the gains from reducing the num-
ber of intra-stack links that need to be created and dereferenced.

These changes allowed the unoptimized and optimized byte
codes to use the same stack organization, although not necessarily
identical frames. The byte-code optimizer makes more efficient use
of the stack by not intermixing the code for nested calls. For the
optimized code, the stack at the time of the call to g would look
like this:

a+2
return code for (g ...)
template
b
a
continuation to (lambda (a b) ...)

Using the same stack organization for unoptimized and optimized
byte code, and thus for native code as well, avoided the need to
modify the runtime code, such as the debugger, when adding the
native code compiler.

5. The byte-code optimizer
The byte-code optimizer works basically in three stages:

1. a front end translates the byte code by to the CPS intermediate
representation of the Transformational Compiler,

2. a series of optimizations, all operating on the intermediate rep-
resentation,

3. a back end that turns the intermediate representation back into
a byte code.

The following subsections expand, respectively, on the intermedi-
ate representation, and the three stages of the optimizer itself.

5.1 CPS intermediate representation
The CPS intermediate language used in the compiler consists of
the λ-calculus with the addition of constants and annotations on λ
forms. The constants include data constants, such as integers and
strings, and primitive operators (primops). Note that even regular
procedure calls and returns are explicit primops; the explanation
below has details. The annotations on the λ forms divide the forms
into three classes: continuations, jump targets, and procedures,
depending on how the value of the form is used. Continuations are
λ forms passed as continuation arguments to primops. Jump targets
are λ forms whose calling points have been identified and which are
all within the same procedure λ. All other λ forms are procedures.

Within the compiler CPS programs are represented as a tree
containing four types of nodes: lambdas, calls, literals, and variable
references. As described above, lambda nodes are further divided
into λcont, λjump, and λproc nodes according to their usage. All
calls are to primitive operators (primops), and are either trivial, if
the primop simply computes a value, or nontrivial, if the primop has
side effects or directly affects the control flow. Calls to nontrivial
primops have continuation arguments, calls to trivial primops do
not. Calls to procedures are represented as calls to primops that
invoke one of their arguments.

The node tree has a very regular structure:

• The body of every lambda node is a non-trivial call.
• The parent of every non-trivial call is a lambda node.
• Every cont lambda is a continuation of a non-trivial call.
• Every jump lambda is an argument to either the let or letrec

primops (described below).



• The lambda node that binds a variable is an ancestor of every
reference to that variable.

A basic block appears as a sequence of non-trivial calls each
with a single continuation that links the sequence. The block begins
with a λproc or λjump, or with a λcont that is an argument to a
call with two or more continuations, and ends with a call with no
continuations, such as a return or tail-call, or a call to a conditional
primop, which get two or more continuations.

Basic blocks are grouped into trees. The root of every tree is
either a proc or jump lambda, the branch points are calls with two
or more continuations, and the leaves are jumps or returns. Within
a tree the control flow follows the lexical structure of the program
from parent to child (if we ignore calls to other λprocs).

Every λjump is called from within only one λproc, so for control
flow a λproc can be considered to consist of a set of trees, the leaves
of which either return from that λproc or jump to the top of another
tree in the set.

For the following five primops the λ node being called, jumped
to, or whatever has been identified by the compiler, and the num-
ber of variables that the lambda node has matches the number of
arguments.

• (call cont proc . args)
• (tail-call cont-var proc . args)
• (return cont-var . args)
• (jump jump-var . args)

The next three primops are the same as the above except that
the being called procedure has not been identified by the compiler.
There is no unknown-jump primop because all calls to λjumps
must be known.

• (unknown-call cont proc . args)
• (unknown-tail-call cont-var proc . args)
• (unknown-return cont-var . args)

λproc nodes are called with either call or tail-call if all
of their call sites have been identified, or with unknown-call or
unknown-tail-call if not. λjump nodes are called using jump.

The primop let binds values such as lambda nodes or the
results of trivial calls to variables. This primop is needed because
of the requirement that every call have a primop; all it does is apply
cont to args (it is called let instead of apply because let forms
in the source code become calls to this primop).

• (let cont . args)

Recursive binding is implemented using a pair of primops.

• (letrec1 cont)
• (letrec2 cont id-var lambda1 lambda2 ...)

These are always used together, with the body of the continuation
to letrec1 being a call to letrec2. The two calls together look
like:

(letrec1 (lambda/cont (id-var var0 ... varn)
(letrec2 cont id-var lambda0 ... lambdan)))

This binds vari to lambdai, with the lambdai in the lexical scope
of the vari. The id-var is used to verify that matching letrec1
and letrec2 calls have not gotten separated by a misbehaving
compiler transformation.

• (test contt contf arg)

This primop is for conditionals; it accepts two continuations contt
and contf , and the value of arg determines which one gets invoked:
contt for a true value, contf for false.

5.2 Byte code to CPS
The converter from byte code to the CPS intermediate representa-
tion accepts a closure and turns it into a CPS λproc node. The con-
version depends on the regular way in which the code generated by
the byte-code compiler uses the stack, and uses a fairly standard
abstract-stack analysis to keep track of what the individual slots on
the stack contain: As the converter passes through a basic block, it
maintains an abstract representation of the contents of the *val*
register and the stack. The abstract representation distinguishes the
following cases:

• a literal directly pushed by a byte code,
• a variable in the CPS representation, denoting an intermediate

result of the computation previously examined,
• the environment containing abstract value representations,

which was pushed as part of the procedure-call protocol,
• the template, which was pushed as part of the procedure-call

protocol,
• a reference to the environment of the closure, which needs to be

preserved.

All intermediate results on the stack become assigned variables in
the CPS node as it is being constructed. Moreover, the converter
needs to track targets of jumps, which it turns into λjump nodes.
It also decodes the constructions of recursive environments, which
are the compilation product of letrec expressions in the original
Scheme program.

As an example, consider the following Scheme procedure:

(define (tally p l)
(let loop ((l l) (a 0))

(if (null? l)
a
(loop (cdr l) (if (p (car l)) (+ a 1) a)))))

Tally takes a predicate and a list and returns the number of ele-
ments in the list for which the predicate returns true. The CPS code
produced by the conversion is reasonably close to the original:

(P tally_4 (c_3 p_2 l_1)
(LET* (((x_29 loop_5)

(letrec1))
(() (letrec2 x_29 ^loop_9)))

(unknown-tail-call c_3 loop_5 l_1 ’0)))

(P loop_9 (c_8 l_7 a_6)
(LET* (((v_10)* (eq? l_7 ’())))
(test 2 ^c_12 ^c_13 v_10)))

(C c_12 ()
(unknown-return c_8 a_6))

(C c_13 ()
(LET* (((v_14)* (cdr l_7))

((v_16)* (car l_7))
((v_19) (unknown-call p_2 v_16))
((j_26)* ^j_25))

(test ^c_20 ^c_21 v_19)))
(C c_20 ()
(LET* (((v_22)* (+ a_6 ’1)))

(jump j_26 v_22)))
(C c_21 ()
(jump j_26 a_6))

(J j_25 (v_24)
(unknown-tail-call c_8 loop_5 v_14 v_24))

The P forms stand for λproc nodes, the C nodes stand for λcont

nodes, and the J nodes stand for λjump nodes. (The indentation



indicates lexical depth.) The LET* expressions describe both calls
to let primop (marked with a * after the bound variables), as well
as calls to primops with a continuation. Note that the latter may
bind several variables. Thus, the first two bindings in c 13 are
really calls to let, and the third is a call to the unknown-call
primop, with a continuation that binds v 19. The letrec1 and
letrec2 calls at the top are really nodes of the following form:

(letrec1
(lambda/cont (x_29 loop_5)
(letrec2

(lambda/cont ()
(unknown-tail-call c_3 loop_5 l_1 ’0)))

x_29 ^loop_9))

References like ^loop_9 indicate that really the node of that name,
which occurs later in the printout, appears here.

5.3 Optimization
The transformational compiler applies a variety of aggressive op-
timizations to the CPS nodes that the converter produces, among
them constant folding, beta reduction, matching up procedures
and calling points, turning recursive loops into iterative ones, and
boolean short circuiting.

For the tally example, the optimizer does not have much to do
due to its small size; as the continuation argument of the loop 9
λproc is c 3 for both calls, the optimizer specializes loop 9 for c 3.
The λproc then becomes a λjump because its continuation is gone
and the two corresponding applications of unknown-tail-call
into jumps:

(P tally_4 (c_3 p_2 l_1)
(LET* (((x_34 loop_5)

(letrec1))
(() (letrec2 x_34 ^loop_9)))

(jump loop_5 l_1 ’0)))

(J loop_9 (l_7 a_6)
(test ^c_12 ^c_13 (eq? l_7 ’())))
(C c_12 ()
(unknown-return c_3 a_6))

(C c_13 ()
(LET* (((v_14)* (cdr l_7))

((v_19) (unknown-call p_2 (car l_7))))
(test ^c_20 ^c_21 v_19)))

(C c_20 ()
(jump loop_5 v_14 (+ ’1 a_6)))

(C c_21 ()
(jump loop_5 v_14 a_6))

5.4 Byte-code annotation
The rest of the byte-code optimizer is concerned with turning
the CPS code back into code. The first task at hand is the re-
introduction of template references (for literals and subtemplates
representing internal procedures) and explicit closures and envi-
ronment references as required by the byte code (see Section 3.3).
Both are straightforward. The example involves only a template
reference:

(P tally_4 (c_3 e_36 t_37 p_2 l_1)
(LET* (((x_34 loop_5)

(letrec1))
(() (letrec2 x_34 ^loop_9)))

(jump loop_5 l_1 ’0)))

(J loop_9 (l_7 a_6)
(test ^c_12 ^c_13 (eq? l_7 (template-ref t_37 ’4))))
(C c_12 ()
(unknown-return 0 c_3 a_6))

(C c_13 ()
(LET* (((v_14)* (cdr l_7))

((v_19) (unknown-call p_2 (car l_7))))
(test ^c_20 ^c_21 v_19)))

(C c_20 ()
(jump loop_5 v_14 (+ ’1 a_6)))

(C c_21 ()
(jump loop_5 v_14 a_6))

The parameter e 36 is newly introduced for the implicit environ-
ment of the closure, and t 37 is the template. The one template ac-
cess is for the literal access to the empty list. In the example, e 36
is dead and will actually be eliminated in the final output code.

The re-introduction of environments takes the opportunity of
merging the closure and environment objects for all non-recursive
objects—the values of the free variables occur in the closure object
itself, rather than an environment pointed to by the closure.

Just before the actual code generation, the byte-code optimizer
allocates stack offsets to variables. Every live variable is assigned
a location in a stack frame. This is done by a simple graph coloring
algorithm, which reuses stack frames as the variables they represent
become dead.

Furthermore, for tail calls the optimizer has turned into loops,
it must also insert explicit polling calls before back edges in the
control-flow graph to check for interrupts (see Section 3.6). The
example requires no polling instructions, as every iteration of the
loop performs a procedure call.

5.5 Byte-code generation
With the annotation done by the previous phases, the generation of
byte code is again a straightforward process. Whereas the original
byte code managed intermediate values by pushing and popping on
the stack, the byte code emitted by the optimizer operates within a
fixed stack frame allocated at the very beginning.

The main complication arises through back edges in the control-
flow graph. These are tail calls in the original byte code, which uses
the simple but slow protocol of creating the new stack frame on top
of the current one and then moving it downwards the stack. The
byte-code optimizer uses a stack-shuffle instruction to directly
turn the current stack frame into the stack frame needed at the
destination of the back edge.

The byte code emitted by the example is as follows (with ex-
planatory comments):

0 (protocol 2 (push template)) ; environment is dead
3 (push-n 2) ; fixed stack frame
6 (integer-literal 0)
8 (stack-set! 1)
10 (jump (=> 13))
13 (stack-ref 3)
15 (push)
16 (template-ref 3 4) ; template is 3 into the stack
19 (eq?)
20 (jump-if-false (=> 26))
23 (stack-ref 1)
25 (return)
26 (stack-ref 3)
28 (stored-object-ref pair 1) ; cdr
31 (stack-set! 0)
33 (push-false) ; placeholder for return address
34 (stack-ref 4)
36 (stored-object-ref pair 0) ; car
39 (push)
40 (stack-ref 6)
42 (call (=> 57) 1)
46 (cont-data (=> 57))
57 (protocol 1) ; continuation accepts one value
59 (stack-set! 3)
61 (stack-ref 3)
63 (jump-if-false (=> 81))
66 (integer-literal 1)
68 (push)
69 (stack-ref 2)
71 (+)



72 (stack-set! 1)
74 (stack-shuffle! 1 (1 4)) ; shuffle stack 0 -> 3
78 (jump-back (=> 13))
81 (stack-shuffle! 1 (1 4)) ; shuffle stack 0 -> 3
85 (jump-back (=> 13))

Note that the indices with the stack-shuffle! instruction are
incremented by one to allow for an additional slot at 0 used to
correctly shuffle in the presence of cycles.

5.6 Peephole optimizations
The emitted byte code still offers numerous opportunities for peep-
hole optimization—a stack-set! followed by a stack-ref to
the same location is common, likewise jumps to the next instruc-
tion. A pattern-directed peephole optimizer operating on the byte
code catches the most common cases. Its implementation reuses the
byte-code parser in the front end and the standard system assembler
to produce the output. The peephole optimizer also re-introduces
the peephole instructions of the VM, and combines predicates (pro-
ducing a Scheme boolean value) followed by conditional jumps
into single instructions combining the test and the jump. This is
the result for the tally example:

0 (protocol 2 (push template))
3 (push-n 2)
6 (integer-literal 0)
8 (stack-set! 1)

10 (stack-ref+push 3)
12 (template-ref 3 4)
15 (jump-if-not-binary (=> 22) eq?)
19 (stack-ref 1)
21 (return)
22 (stack-ref 3)
24 (stored-object-ref pair 1)
27 (stack-set! 0)
29 (push-false)
30 (stack-ref 4)
32 (stored-object-ref pair 0)
35 (push+stack-ref 6)
37 (call (=> 52) 1)
41 (cont-data (=> 52) (depth 5) (template 2) (live 0 1 2 4))
52 (protocol 1)
54 (stack-set! 3)
56 (jump-if-false (=> 73))
59 (integer-literal+push 1)
61 (stack-ref 2)
63 (+)
64 (stack-set! 1)
66 (stack-shuffle! 1 (1 4))
70 (jump-back (=> 10))
73 (stack-shuffle! 1 (1 4))
77 (jump-back (=> 10))

6. The native-code compiler
The native-code compiler converts a byte-code closure (optimized
or not-optimized) to native code. A set of compilators, one for
each byte-code instruction, emits separate pieces of native code for
each byte-code instruction. A compilator can generate straight-line
code directly equivalent to the corresponding byte-code instruction.
However, a compilator may also resort to the following external
facilities to implement the instruction:

• call static glue code reachable via global labels
• request operations provided by the VM
• restart the VM
• call C functions exported by the VM

The static glue code implements functionality that would take too
many instructions in the generated code. A small set of Scheme
procedures emit the glue code, which, as detailed in Section 6.2,

mediates between the native code and the VM C code. The other
facilities in the list are invoked via the glue code. For requesting
a operation or restarting the VM, the glue code pushes a return
address or continuation frames to enable returning to native code.
Sections 6.2 and 6.3 detail these two mechanisms. For calling a C
function exported by the VM, the glue code implements the calling
convention and the linker fills in the address of the called function.
Sections 6.4 and 6.5 contain corresponding examples.

The compiler supports these facilities by providing the compila-
tors with the addresses of the glue code. The restart facility also re-
quires the byte code to still be available. To that end, templates have
an additional slot that always contains the byte code; the native-
code compiler only replaces the original slot. The run-time system
may also use the slot containing the byte code to associate the orig-
inal debugging information with continuations on the stack.

6.1 The driver of the native-code compiler
The driver of the native-code compiler maps the compilators over
a byte-code vector and produces a new closure. It also recursively
descends into any templates contained in the closure’s template.
These sub-templates contain the code of locally defined procedures.

To disassemble the byte code, the native-code compiler uses
the byte-code parser. The state passed between the compilators is
an instruction-stream object into which the compilators emit their
code and which an assembler turns into the final code vector. The
compiler itself is only about 100 lines of code.

6.2 Interfacing VM and native code
The glue code is responsible for switching from byte code to native
code and vice versa. Native code and byte code communicate via
the *val* register, the stack, and other VM registers. The glue code
synchronizes *val* with %eax and the VM stack pointer *stack*
with %esp, and makes the addresses of the other registers available
in a global array.

Switching from byte code to native code potentially happens
upon procedure calls and returns. This is merely a matter of extract-
ing the pointer to the first instruction and jumping to it. Whenever
the native code needs to call a byte-code procedure or return to a
byte-code continuation, it simply returns to the VM with a special
service tag describing the action requested of the VM. This tag gets
passed to the post-native-dispatch procedure in the VM:

(define (post-native-dispatch tag)
(let loop ((tag tag))

(case tag
((0)
(goto return-values s48-*native-protocol* null 0))

((1)
(goto perform-application s48-*native-protocol*))

((2)
(let* ((template (pop))

(return-address (pop)))
(cond ((pending-interrupt?)

(goto handle-native-poll template
return-address))

(else
(loop (s48-jump-native return-address

template))))))
((4)
(goto interpret *code-pointer*))

((5)
(goto do-apply-with-native-cont s48-*native-protocol*

(pop)))
(else
(error "unexpected native return value" tag)))))

If the tag is 0, the native code wants the VM to invoke a contin-
uation. This happens if the continuation contains byte code, if a
values instruction wants to return to byte code, or if the continu-



ation’s protocol is too complex or does not match. In all cases, the
native code has set s48 Snative protocolS (available to the VM
as s48-*native-protocol*) to the number of values to return
and the top of the stack points to the continuation to be invoked.

If the tag is 1, the VM invokes a procedure on behalf of
the native code. In this case *val* contains the procedure and
s48-*native-protocol* the number of arguments on the stack.
The procedure either contains byte code, a complex protocol, or
the number of arguments did not match, or the native code detected
an interrupt while calling. Thus the native code only implements
the most common case of calling a native-code procedure with a
small number of arguments. In order to do so, it ensures that %eax
contains a closure, checks the protocol and the stack limit and then
jumps to the code.

The native code sets the tag to 2, if its implementation of poll
has detected a pending interrupt. The VM receives the template and
the address after the poll on the stack and handle-native-poll
constructs a continuation for the interrupt handler before calling
the handler. If the interrupt must be ignored, s48-jump-native
directly returns to the native code.

If the tag is 4, the native code failed to execute an opcode and
wants the VM to retry. Section 6.3 details the restarting mechanism.

The glue code jumped to by the compilator of apply sets the tag
to 5. The compilator and the glue code only need to put the number
of stack arguments into s48 native protocol and set up the
continuation. The VM procedure do-apply-with-native-cont
performs the protocol conversion and invokes the procedure. After
the protocol conversion, invoking the procedure is simple even for
native-code procedures. Note that the compilator of apply always
returns to the VM and thus needs to emit only four instructions.
The glue code is likewise very short.

6.3 The restart service
The restart service allows a native-code compilator to let the VM
interpret the byte-code instruction the compilator is supposed to
implement. This allows a compilator to implement an instruction
only partially—say, for a restricted set of arguments—and resort to
the VM for the full semantics. Restarting is possible because of the
simplicity of the compiler: as it translates one instruction at a time,
the VM can take over at any time. Aside from the value register
and the stack, which the glue code can synchronize easily, the only
other information required by the VM is the byte-code instruction
pointer. The glue code can reconstruct the instruction pointer from
the template and the byte-code program counter, which is passed to
each compilator. However, the compilator must ensure that the VM
continues with the native code after it has completed executing the
byte-code instruction.

As an example, in case of a failure, the native code requests a
restart from the VM, which redetects the failure and raises the ex-
ception. The glue code sets up the code pointer and the registers
for the VM. (This is only three instructions, which keeps the pres-
sure on the instruction cache low.) The continuation to which the
handler returns must jump back to the original native code: The
glue code achieves this by generating a native-code continuation
and storing a pointer to it in a special variable.

As the glue code copies %eax to *val* and the VM assumes
the remaining non-instruction-stream arguments of an opcode to
be on the stack, the native code must not modify these locations
before it requests the restart. This sometimes results in the insertion
of additional instructions, either to move the contents of %eax
to another register before modifying it or using stack reference
instructions instead of pop to access operands combined with a
final instruction to pop all arguments at once. Especially for %eax,
this overhead is low. In most cases, copying would be required
anyway, as the code for the type checks are destructive on the x86.

6.4 Arithmetic operations
The Scheme 48 virtual machine provides instructions for generic
arithmetic directly. However, it only performs fixnum and bignum
arithmetic directly, and raises an exception for all other number
types. The run-time system handles these cases.

For inline native code, only fixnum arithmetic is practical.
(Flonum arithmetic is future work.) However, using restarting to
make use of the VM’s implementation for bignums would require
the VM to check after each arithmetic instruction whether is must
continue to interpret byte code or return to native code (see Sec-
tion 6.3). Instead, the VM exports the floating-point and bignum
operations as C functions along with type predicates for them. The
glue code uses these functions if the corresponding compilator has
detected that the arguments (or the result) are not fixnums.

6.5 Other complex opcodes
There are several opcodes where a translation to native code would
be impractical. These are opcodes that really provide library func-
tionality, that either implement an interface to the operating system
or, in very few cases, are part of the VM to provide a performance
advantage over byte code. (For example, providing read-char in
the VM provides a 10x–15x speedup in I/O-bound code over the
equivalent byte-code implementation.) For these opcodes, the com-
piler takes the an approach similar to the arithmetic operations: the
VM makes the corresponding functionality available to the native
code as C functions, and the compilators call these functions. The
exceptions raised by these functions push exception continuations
that jump to the original native code.

6.6 Allocation
The native code currently supports allocation of heap objects using
the standard two-space copier of Scheme 48. (Support for the new
BIBOP collector is planned.)

Allocation gets the address of the new object from the VM
register *hp*. After saving this address, the code increments the
register and compares the result with the limit of the heap. If
the limit is not reached, the allocation was successful. Otherwise
code in an accompanying floating block will jump to an external
label which will undo the failed allocation and trigger a garbage
collection. After the requested number of bytes have been freed,
the glue code will return to the allocation, where the register can
now be loaded successfully.

6.7 Optimizations
The generated code still provides various opportunities for im-
provement on the machine code level. For example, each compila-
tor currently places the result in %eax often at the cost of additional
movl instructions. This can be easily remedied by alternately us-
ing a second register and generating a second version of the static
glue code tailored to synchronize *val* with it. Other simple op-
timizations include the proper alignment of jump targets and loop
unrolling if arguments to compilators are statically known.

7. Benchmarks
Figure 2 contains some preliminary benchmarks comparing stan-
dard byte code with itself compiled to native code. Figure 3 com-
pares non-optimized with optimized native code, and the PLT
MzScheme 352 JIT [13]. The benchmarks are a subset of the stan-
dard Gabriel benchmarks [14]. The timings where obtained on a
machine 3.00GHz Pentium 4 system, running FreeBSD 5.4 with
a heap size of 160MB. The MzScheme timings do not include
garbage collection, because the Scheme 48 heap is so large that
almost no GCs happen there.
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Figure 2. Timings comparing byte code and native code
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Figure 3. Timings comparing non-optimized native code, opti-
mized native-code, and MzScheme

The benchmarks show that the native-code compiler achieves
a speedup between 2 and 4 and that the optimized native code
can add an additional speedup up to a factor of 2, especially if
the optimizer is able to turn tail-calls into jumps. The gains are
low if there are lots of recursive calls probably because these are
currently not turned into direct jumps but the processor must do
an indirect jmp. We are currently investigating the case where the
optimized code is slower that the original code and we are confident
to remedy this soon. The comparison with MzScheme indicate that
our approach is already able to compete with other optimizing
Scheme implementations, even though there is still much room for
improvement (see Section 10).

8. Run-time code generation
Sperber and Thiemann have developed a facility for implementing
run-time code generation (RTCG) for byte code in Scheme 48[23].
This infrastructure relies on generating combinators for code gen-
eration from the source code of the byte code compiler itself. These
combinators are then symbolically composed with the back end of
a partial evaluator, which yields the RTCG facility. Hence, the gen-
erators created by the partial evaluator directly generate byte-code
without creating intermediate source-code data structures, which
is significantly more efficient than generating and then compiling
source code. This is another example of reuse in the Scheme 48 in-
frastructure. It crucially depends on the simplicity of the byte-code
compiler, which acts as a catamorphism on the source code.

With the native-code compiler in place, we have composed
Sperber’s and Thiemann’s byte-code-generation generators from
the RTCG facility with the compilators of the native-code compiler,
and thus achieved straight-through native-code code generation,
with no intermediate source or byte code, at very little additional
cost, again almost completely relying on reused code.

9. Related work
The advent of Java and the Java Virtual machine led to a large body
of research and implementation work on just-in-time compilers.
Even though much of that work is relevant to our subject area,
there is too much of it for us be exhaustive or fair in our selection.
Aycock’s survey paper [5] gives an extensive historical overview.

Because of the large demand for fast execution of JVM code,
many high-performance JVMs perform different levels of sophisti-
cated optimizations, directed by profile-driven analysis. Most code-
generation engines for the JVM either involve one or several inter-
mediate representations between the JVM code and native code,
and are thus significantly more complex than our approach. Even
those JITs that feature one-pass translation of byte code to native
code perform rudimentary analysis, typically involving at least an
abstract stack analysis similar to that performed by our byte-code
optimizer.

Sun’s original JIT described by Cramer et al. [10] compiles
straight-line JVM code to native code, but delays generating code
that evaluates expressions until the result is needed, reconstituting
the original expression along the way and generating special code
only then. Adl-Tabatabai et al. [2] describe a JIT developed by
Intel that similarly translates directly to native code, calling their
low-overhead code-generation lazy code selection, but even their
technique involves an abstract-stack analysis, and the construction
of a control-flow graph for register allocation.

The code generators of the sophisticated JITs that are part of
Sun’s HotSpot system [21], IBM’s Java Development kit [24],
and the Jalapeño VM [3] (now Jikes) are all considerably more
complicated and involve multiple intermediate representations.

The virtual machine of the Squeak implementation of Smalltalk [15]
is constructed analogously to the Scheme 48 VM: It is written in a
subset of Smalltalk that is translated to C code.

PLT MzScheme [13] is another originally byte-code-based
Scheme implementation that has recently gained a JIT compiler,
which achieves significant performance improvements. MzScheme’s
JIT is part of the core (written in C) implementation of its virtual
machine, and uses GNU Lightning for code generation.

Many Scheme, Lisp, and ML systems have traditionally fea-
tured dynamic compilation to native code as their normal mode of
operation [22, 4, 20, 8, 11]. However, most of these systems skip
the generation and interpretation of byte code altogether. If they do
supply an ”interpreted mode“, they usually interpret at a higher rep-
resentational level than byte codes. The MacScheme system gener-
ated native code not directly from byte code, but from a representa-
tion similar to it [6]. MIT Scheme [1] also compiles from byte code
to native code, but the compilation is offline and file-based.

On of the authors was previously successful implementing a
compiler from byte code to PowerPC native code in his Master’s
thesis. His work showed that a simple translator from byte code to
native could be implemented with limited effort, and still signifi-
cant performance improvements of factors usually between 2 and
4. However, his results also showed that native-compilation could
benefit from changes in the VM architecture, and that more opti-
mization would be needed to achieve the performance customarily
associated with native-code compilation.



10. Future work
There are several areas where the system still has some way to go:

Optimizations A number of relatively simple optimizations should
considerably improve the quality of the output code, specifically:

• lambda lifting [8],
• table-driven case dispatch [7],
• optimization of the parallel assignment code to drop procedure

arguments into the right stack slots immediately, and thus min-
imizing the work stack-shuffle has to do.

Furthermore, a coworker is working on a flow-analysis framework
to enable flow-directed inlining, removal of redundant tag checks,
and unboxing optimizations. (The CPS representation of the trans-
formational compiler is eminently suitable for this task.)

JIT The native-code compiler currently runs as regular Scheme
code on top of the VM, but should really run transparently as part of
the VM’s operation. To this end, the compiler needs to be translated
to Pre-Scheme.

Fancier native-code generation Native-code generation could
presumably benefit from a more detailed analysis of the byte code.
In particular, the fixed stack frame produced by the byte-code op-
timizer could be a good starting point for register allocation. We
remain doubtful whether this line of work will produce results that
justify the increase in complexity.

Profile-driven compilation As with current byte-code JIT imple-
mentations (see the section on related work), the operation of the
byte-code optimizer and the native-code compiler should be di-
rected by a profile-driven analysis of the running code.

Multi-processor support and Kali Scheme A coworker has al-
ready added multi-processor support to Scheme 48, which works
by starting a variant of the VM (called virtual processor) in a
POSIX thread. Combining the native-code support with virtual
processors should be a mere matter of adapting the glue code.
Likewise, a coworker has Kali Scheme, the distributed variant of
Scheme 48, to the current development version. Adding our native-
code compiler to Kali should be as simple as replacing native code
by (optimized) byte code within templates before transmitting over
the net and invoking the compiler upon receiving a template.

11. Conclusion
We have shown how modular design with simple components en-
able significant code reuse in a programming language implemen-
tation. This reuse has transcended several generations of projects
and programmers. Therefore, these reuse opportunities are more
than a mere accidents. The crucial aspect has been the simplicity in
the design of the individual components, which has enabled their
composition. Thus, tractability is useful not only as a goal in and
of itself, but is rather an indispensable property of the system as it
is being extended.

The byte-code optimizer improves on the results of the byte-
code compiler, and relies on the existing transformational compiler
for the optimization proper. The optimizer still shows room for im-
provement. This, however, consists mostly of implementing stan-
dard compiler-construction techniques, and is planned as the next
stage of the project.

The central new component described in this paper is the native-
code compiler, whose design relies on three ideas to ease imple-
mentation: the VM provides services to the native code for an easy
implementation or extension of control-transfer-changing instruc-
tions; restarting the VM for relieving the native code of certain as-
pects of the implementation; and the export of VM functionality

as C functions for complicated opcodes at the cost of hand-written
glue code. We have shown that these three ideas have enabled im-
plementing a simple native-code compiler with little effort, even
though it needs to deal with complicated language constructs.
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