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Abstract
The functional-programming community has produced mature
tools for writing compilers: This paper describes our experience
implementing TTCN-3, a programming language designed for
writing test suites for programs and protocol implementations. Our
TTCN-3 compiler is written in Scheme; it builds upon the Transfor-
mational Compiler that originated in the T and Scheme 48 projects,
as well as the Essence functional LR parser generator, whichis im-
plemented using partial evaluation—both of which have existed
for more than 20 and 10 years, respectively. Development wasa
straightforward experience—the only source of problems was the
considerable complexity of the source language.

1. Introduction
In the universe of programming languages, the worlds of functional
programming and TTCN-3 (ETSI ES 201 873-1 V3.4.1 2008-09)
could hardly be further apart:

The Testing and Test Control Notation Version 3 (TTCN-3)
is an internationally standardized language for defining test
specifications for a wide range of computer and telecommu-
nication systems. (Willcock et al. 2005)

As such, TTCN-3 is a concurrent, but otherwise traditional proce-
dural language, with various special features to make it suitable for
writing test suites, including an elaborate type system with sub-
typing, and an extensive framework for doing pattern matching
on values. The TTCN-3 standard specifies an entire infrastructure,
including graphical and tabular notations for TTCN-3 programs,
and significant parts of the run-time system. The complexityof the
language and its run-time system make implementing TTCN-3 a
daunting task, especially as the language specification does not em-
ploy the idioms and language commonly used by the programming-
language community.

This experience report describes our efforts implementinga
TTCN-3-to-C compiler in Scheme at intaris, a Freiburg-based soft-
ware company. As the goal was to produce a functioning com-
piler with minimum effort, we chose to re-use existing compiler
infrastructure as much as possible. The crucial re-used bitis the
the Transformational Compiler, which was originally part of the T
project but has survived as the core of the Pre-Scheme compiler
used to compile the VM of Scheme 48. Moreover, we used the
Essence parser generator, along with a newly developed scanner
generator to develop the front end.
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Once we had chosen these base technologies, development was
essentially a straightforward exercise: The Transformational Com-
piler with its time-proven CPS representation forms the backbone
of the system, and greatly helped structure the compiler itself. The
CPS representation also lays the groundwork for the implementa-
tion of concurrency, as the C run-time system employs user-level
threads and needs to pre-empt and re-enter the running program.

Consequently, there were hardly any notable surprises to report.
The main issues that arose during the development of the com-
piler had to do with the (from a programming-language viewpoint)
idiosyncratic nature of TTCN-3. Writing the compiler itself took
about 80 man-days, including the scanner generator—given that the
relevant parts of the standards number over 400 pages, and com-
piler development is typically priced at thousands of dollars per
page of programming-language standard, this was very little effort.
In addition to the advantage in expressiveness, Scheme 48 supports
fast development through quick turnaround: The system letsthe
programmer load, run, and change the TTCN-3 compiler in place
in a controlled manner, which gives further boost to productivity.

Our work demonstrates that even in the cutting-edge field of
functional programming, shopworn but rock-solid technologies ex-
ist that are worth considering for new projects.

2. TTCN-3
TTCN-3 has been developed by the Methods for Testing and Speci-
fication Technical Committee (TC-MTS) at the European Telecom-
munications Standards Institute (ETSI). The predecessor of TTCN-
3, TTCN-2 (“Tree and Tabular Combined Notation”), was a limited
tabular notation for expressing tests, and incorporated protocol-
specific terminoloy. In constrast, TTCN-3 is a full-fledged pro-
gramming language, targeted at specifying and writing testsuites
for system components, protocols or systems in distributedsettings.

The underlying idea of TTCN-3 is that test suites for a specific
“system under test” (orSUT for short) or protocol are specified
and written in TTCN-3, independently from the implementation
platform of the SUT, the programming language used to implement
the SUT, the internals of the TTCN-3 run-time system, or other
specifics resulting from deploying the system to a specific setup.
Public TTCN-3 test suites exist for IPv6, DHCPv6, and SIP.

2.1 The TTCN-3 Programming Language

TTCN-3 is an imperative programming language with concurrent-
programming features based on the actor model (Hewitt et al.
1973), and additional constructs for writing test cases. Its syntax is
loosely based on other popular imperative programming languages
that distinguish between expressions and statements; it draws on
elements from the Algol family (such as Algol-style assignments)
and C (such as curly braces as block delimiters).

TTCN-3 has a partially static type system with a set of base
types including integers, floats, and character strings, with a spe-
cial base typeverdict for denoting test results, and with user-
defined composite types. Composite types include ordered and un-
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module MyTestModule {
type record MyMessageType {

integer seqNum,
record of charstring data

}
type port MyPort message {

in MyMessageType
}
type component MyTestComponent {
timer timer1;
port MyPort port1

}
template MyMessageType msgTemplate := {
seqNum := (100 .. 200),
data := {*, permutation("hans", "fritz", "franz"), ?}

}
testcase myFirstTestcase() runs on MyTestComponent {
timer1.start(60.0);
alt {

[] port1.receive(msgTemplate) {
setverdict(pass);

}
[] timer1.timeout {
setverdict(fail);

}
}

}
}

Figure 1. Example TTCN-3 test module

ordered product types (calledrecordsandsets, respectively), sum
types (calledunions), and a plethora of ordered and unordered ag-
gregate types. The language also has a notion of subtyping atop the
static types, only part of which is checked statically—the rest is
done at run time. The programer defines a new subtype of an al-
ready existing type by restricting its values, e.g. via subranges, size
restrictions, or patterns similar to regular expressions.

The TTCN-3 programming language also incorporates a run-
time pattern-matching mechanism. Patterns—calledtemplates—
are run-time values. Templates specify the shape of a value,with
restrictions on the variable parts. (In contrast to ML-style pattern
matching, a TTCN-3 template is not a binding construct.)

TTCN-3 has three different parameter-passing mechanisms,
corresponding to call-by-copy, call-by-value-result, and call-by-
reference. In contrast to many other languages supporting acall-
by-value evaluation strategy, TTCN-3 has no explicit references—
even structured data types such as arrays are copied on assignment.
The absence of references incurs significant run-time overhead, but
also obviates the need for automatic memory management.

Actors are calledcomponentsin TTCN-3. The SUT is rep-
resented by a virtualsystem component; it communicates via
messages with the test suite. Components declare communica-
tion endpoints calledports that support asynchronous sending and
receiving. The language has a selective-communication mecha-
nism calledalt for formulating complex communication patterns.
The alt construct addresses some of the same problems as the
selective-communication combinators of Concurrent ML (Reppy
1999), but is less compositional and entirely based on polling. An
alt construct takes a snapshot of the various synchronization ob-
jects (ports, timers, components), and then refers to that snapshot to
ensure consistency among alternatives. A semi-formal “operational
semantics” in the TTCN-3 standard uses annotated flow chartsto
specify the concurrency substrate.

TTCN-3 has a simple module system: Modules group named
definitions, which can be imported by other modules.

Figure 1 contains the code of an TTCN-3 module. It shows one
moduleMyTestModule, which contains five definitions:

SA

TE SUT

RTS

FFI

TM TL CH PA

CD

Figure 2. TTCN-3 run-time environment

MyMessageType is a user-defined record type that contains an
integer and a sequence (“record of”) of strings.

MyPort specifies the type of a communication endpoint, which
can receive incoming values of typeMyMessageType. Components
of typeMyTestComponent own a communication portport1 and
a timer namedtimer1. A timer is started with a specific duration
and eventually signals the end of that duration.

The templatemsgTemplate matches values ofMyMessageType
type whoseseqNum field is an integer value in the range from 100
to 200, and itsdata field is a sequence that begins with an arbi-
trary number of arbitrary strings (*), continues with a permutation
of three specific strings, and ends with an arbitrary string (?).

The last definition defines a test case namedmyFirstTestcase,
which runs on components of typeMyTestComponentType. The
first statement of the body of the testcase starts the timer initialized
with a maximal duration of 60 seconds. Thealt statement loops
until either a message matching templatemsgTemplate is received
overport1, or the timertimer1 expires. Thesetverdict state-
ment sets the test outcome accordingly.

2.2 TTCN-3 Run-Time Environment

The TTCN-3 standard defines different kinds of APIs that consti-
tute a test environment for a SUT. From a programming language
perspective, they can be broadly categorized into two kindsof func-
tionality:

• parts of the language runtime system (RTS) startup primi-
tives (TM), logging primitives (TL), primitves for actor com-
munication (CH), and timer primitives (PA)

• FFI bindings for the SUT data serialization/deserialization
code (CD), primitives for actor communication with the SUT
(SA)

A TTCN-3 compiler assumes the existence of implementationsof
these APIs. The standards defines APIs for C and Java bindings.

Figure 2 gives an overview of the different components involved
in a running TTCN-3 test system. The TE (“test executable”) com-
ponent is compiled TTCN-3 program code. The CH API is devised
such that it is possible to deploy the TE—or parts of it—on distinct
hosts with message communication. TTCN-3 code never directly
communicates with the SUT. All communication is routed through
the SA, applying the SUT-specific serialization/deserialization
(CD) in between.

3. Corporate Environment
intaris GmbH is a small software development and consultingcom-
pany in Freiburg im Breisgau, Germany. A major focus of the com-
pany is in software testing, mainly for the embedded market.Typ-
ical customers are companies from the industrial sector, inareas
such as process automation or railroad engineering.

TTCN-3 is well-established in the testing business, especially
for protocol testing in communication technologies. The needs
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Figure 3. Compiler architecture

of typical customers of intaris GmbH with respect to a TTCN-3
test environment gave rise to the development of a custom-made
TTCN-3 compiler with its own requirements, which include:

• The target language of the compiler has to be (portable) C,
because C/C++ is the only available option for many embedded
devices (besides assembler).

• Some target platforms run without an operation system. It must
be possible to generate code that does not require an existing
task/thread scheduler.

• It is essential for some target platforms to make predictions
about the resource usage of a test environment to be deployed.

• Solid software development methods should be used so that
software building on the compiler can meet substantial safety
and integrity standards.

None of the available TTCN-3 implementations meets all of these
requirements. Moreover, no open-source implementation exists that
could be modified to meet them.

4. Compiler Implementation
Figure 3 shows the overall layout of the compiler, which is com-
pletely traditional; the stages are described in the following sub-
sections. The Scheme backend was not part of the requirements, but
greatly simplifies testing, as it is possible to generate code, compile
and run it all within the running Scheme 48 session without hav-
ing to produce intermediate files, invoke the compiler and run the
resulting executable.

4.1 Syntax Analysis

The syntax of TTCN-3 is quite complex: The grammar listed in
the TTCN-3 specification (ETSI ES 201 873-1 V3.4.1 2008-09)
contains more than 1000 productions. It is highly ambiguous: The
grammar assumes that an identifier binding has already been re-
solved prior to parsing to some degree. Here is an excerpt:

161. FunctionIdentifier ::= Identifier
177. FunctionRef ::= [GlobalModuleId Dot]

(FunctionIdentifier | ExtFunctionIdentifier)
270. ExtFunctionIdentifier ::= Identifier

Thus, in its raw form, the grammar is unsuitable for consumption
by a parser generator, and the main effort of constructing a parser
was spent on transforming the grammar into SLR(1) form.

This process was aided by the parser generator used: Essence
is an LR parser generator, which is itself automatically generated
from a generic LR parser via partial evaluation (Sperber andThie-
mann 2000). Essence was originally built as a research prototype
to validate the effectiveness of partial evaluation, but proved well-
suited to the task at hand: The interpretive Essence parser can run
directly, accepting the grammar and the input, and it startsparsing
immediately, without constructing parser or lookahead tables first.
This reduced turnaround time compared to traditional generator-
based or macro-based approaches (Flatt et al. 2004)—and many
turnarounds were needed to massage the grammar into SLR(1).The
(purely functional) code of the generated parser is extremely fast.

We developed the scanner with conventional techniques: We
first wrote a minimalistic scanner generator (calledCronenberg)
to go with Essence, and used it to build the TTCN-3 scanner.

4.2 Static Processing

The abstract syntax tree is represented using a generic datatype
callednode; the implementation of nodes borrows heavily from a
similar data structure used by the Scheme 48 byte-code compiler.
Each node carries anoperator, a source location, an arbitrary num-
ber of arguments (each of which may be another node, or some
constant), and a property list mapping names to arbitrary values.
Dealing with nodes, Scheme’s macros and latent typing come into
full play: Various macros define automatic-deconstructionfacilities
and pattern patching. Latent typing enables attaching arbitrary in-
formation to a node as static processing progresses. Moreover, it
allows various types of generic processing, such as free-variable
analysis, syntax-tree serialization, or automatic conversion to a dot
input file to draw a syntax tree.1

The parser produces an abstract-syntax tree represented asa
node. Nodes operator types are defined like this:

(define-node-type send-statement (exp param to-clause))

Procedures can then use a variety of constructs to dispatch on
node operators, and deconstruct the node. Here is a corresponding
example that uses thenode-type-case macro:

(define (process-statement global-env local-env statement)
(node-type-case statement
((send-statement port param to-clause)
(let ((port-type (process-port/type

global-env local-env port)))
(process-expression/port-argument
global-env local-env port-type ’out param)

(process-to-clause global-env local-env to-clause)))
...))

Static processing comprises a total of 8 passes over the source
code. These are needed because the top-level constructs of the
language are interdependent in various ways, and do not needto
appear in order in a TTCN-3 program. In particular, types may
include restrictions (range restrictions, value lists, regexps etc.)
described by static expressions, which in turn are typed . . .This
requires careful staging and various topological sorts along the way.
Thankfully, expression processing needs only one pass to perform
type checking and compute statically available values. Thetypes
and values are attached to the abstract-syntax nodes as properties.

1 Statically-typed languages offer essentially two choicesto replicate this
kind of representation: 1. Each operator corresponds to a summand in an
algebraic data type, which allows static type checking of pattern matching,
but makes generic processing difficult. 2. A generic representation abandons
static type checking, and requires sum types for every data type needed by
the compiler—this clutters the code with artificial patternmatching.
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4.3 CPS Transformation

The central part of the compiler is the Transformational Compiler
(TC) (Kelsey and Hudak 1989) of the T project (Kranz et al.
2004). The TC uses a single intermediate representation forseveral
different stages of the compiler. In Scheme 48 itself, the TCis
both the central part of the Pre-Scheme compiler (Kelsey andRees
1995), which compiles the VM to C, as well as the native-code
compiler. Still, the TC is in no way tied to Scheme as the language
to be compiled. (The original TC was used to compile Pascal.)

In its latest incarnation as part of Scheme 48, the TC uses a
CPS intermediate representation. In contrast to CPS representations
that use different top-level constructs for regular abstractions and
continuations, the TC represents allλ nodes by a single data type.
Tags attached to to theλ nodes divide them into three classes,
depending on how the value of the form is used. Continuationsare
λ forms passed as continuation arguments to primops. Jump targets
areλ forms whose calling points have been identified and which are
all within the same procedureλ. All other λ forms are procedures.

The CPS nodes form a graph which is manipulated imperatively,
avoiding the need to reconstruct an entire tree when a transfor-
mation affects only a small parts of it. This approach, as well as
the uniformity of the representation makes various transformations
such as contification particularly easy to implement. (The TC rep-
resentation has since been re-discovered and shown to be superior
to direct-style representations in several ways (Kennedy 2007).)

The TC provides various tools for dealing with the CPS rep-
resentations, including a library for constructing CPS transforma-
tions, a pretty printer, and a generic optimizer which can beparam-
eterized with simplifiers for primops of the particular language be-
ing compiled. These proved valuable for developing the CPS trans-
formation at the heart of the TTCN-3 compiler. Generally, using
CPS helped resolve the semantics of some complicated language
constructs, specifically that ofalt and snapshots, as CPS makes
explicit the implicit changes in the control flow of these constucts.

Still, the complexity of the language makes for a rather large
CPS transformation (4000loc), despite the prior expansionof the
code to core constructs. The complex semantics of references,
mutation, and argument passing complicate the task enormously.

4.4 Code Generation

The code generated by the Scheme backend is just the elaborated
CPS code; the code generator is less than 200 lines. It is so simple
because the target language is higher-order, has automaticmemory
management, and supports threads natively.

The C code generator is more interesting, as C does not sup-
port closures directly, and the code has to meet external require-
ments: Memory management must be explicit, and the code must
run under a portable, user-level pre-emptive thread system. The first
requirement is met by a liveness analysis that determines when lo-
cations die, and assigns frame slots to them. The code generator
uses the results of the analysis to insert explicit deallocation into
the code. The second requirement means that the output code can-
not use the C stack for function calls, but must manage continua-
tions explicitly. To that end, the code uses the classic trampoline
technique (Tarditi et al. 1990). Again, CPS helps structurethe pro-
cess, as the explicit continuations correspond to the entrypoints of
a function in the generated code.

5. Run-Time System
The run-time system developed for the Scheme backend proved
enormously valuable in developing its counterpart in C. As the
Scheme code is a direct transliteration of the CPS output code, the
Scheme run-time system neatly separates code-generation issues
from the run-time infrastructure, whereas, with the C code,both

are more closely intertwined. This helped with experimentally clar-
ifying the TTCN-3 execution model. It was particularly valuable
in implementing the complicated template matching mechanism:
We initially developed the code for handling sequence patterns—
which includes constructs such as the Kleene∗ with length restric-
tions and arbitrary permutations—in Scheme, performed lambda
lifting (Johnsson 1985) on it and transliterated the resultto C.

6. Conclusion
When the project originally started, it did not seem such a terri-
bly large task, and we probably would have started on it even if
requirements had forced us to use a more conventional language.
Along the way, the complexity of TTCN-3 gradually revealed it-
self, and it became clear that conventional technologies would have
stretched the required effort far beyond the resources available
to us. The task only became tractable through the use of func-
tional programming, the interactive Scheme 48 developmentsys-
tem, and available infrastructure for constructing compilers: For-
tunately, Scheme, Essence and the Transformational Compiler had
not accreted any digital mould, and were up to the task.
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