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Abstract

The functional-programming community has produced mature
tools for writing compilers: This paper describes our eiqgrese
implementing TTCN-3, a programming language designed for
writing test suites for programs and protocol implementsi Our
TTCN-3 compiler is written in Scheme; it builds upon the Ts&m-
mational Compiler that originated in the T and Scheme 48gtsj

as well as the Essence functional LR parser generator, vidioh
plemented using partial evaluation—both of which have texis
for more than 20 and 10 years, respectively. Developmentavas
straightforward experience—the only source of problems tha
considerable complexity of the source language.

1. Introduction

In the universe of programming languages, the worlds oftfanal
programming and TTCN-3 (ETSI ES 201 873-1 V3.4.1 2008-09)
could hardly be further apart:

The Testing and Test Control Notation Version 3 (TTCN-3)
is an internationally standardized language for definisg te
specifications for a wide range of computer and telecommu-
nication systems. (Willcock et al. 2005)

As such, TTCN-3 is a concurrent, but otherwise traditiorracp-
dural language, with various special features to make tiablg for
writing test suites, including an elaborate type systenh\siib-
typing, and an extensive framework for doing pattern maighi
on values. The TTCN-3 standard specifies an entire infrestre,
including graphical and tabular notations for TTCN-3 piags,
and significant parts of the run-time system. The complexitye
language and its run-time system make implementing TTCN-3 a
daunting task, especially as the language specificatios riotsem-
ploy the idioms and language commonly used by the progragymin
language community.

This experience report describes our efforts implemenéing
TTCN-3-to-C compiler in Scheme at intaris, a Freiburg-loleseft-
ware company. As the goal was to produce a functioning com-
piler with minimum effort, we chose to re-use existing colapi
infrastructure as much as possible. The crucial re-use lite
the Transformational Compiler, which was originally pafrtiee T
project but has survived as the core of the Pre-Scheme cempil
used to compile the VM of Scheme 48. Moreover, we used the
Essence parser generator, along with a newly developechacan
generator to develop the front end.
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Once we had chosen these base technologies, development was
essentially a straightforward exercise: The Transforomati Com-
piler with its time-proven CPS representation forms thekbaoe
of the system, and greatly helped structure the compilelfitshe
CPS representation also lays the groundwork for the imphtane
tion of concurrency, as the C run-time system employs et
threads and needs to pre-empt and re-enter the runninggpnogr

Consequently, there were hardly any notable surpriseptote
The main issues that arose during the development of the com-
piler had to do with the (from a programming-language vieinf)o
idiosyncratic nature of TTCN-3. Writing the compiler ite&bok
about 80 man-days, including the scanner generator—dnagite
relevant parts of the standards number over 400 pages, and co
piler development is typically priced at thousands of dslliper
page of programming-language standard, this was verny éftbrt.

In addition to the advantage in expressiveness, Schemepfp®da
fast development through quick turnaround: The systemtleis
programmer load, run, and change the TTCN-3 compiler ineplac
in a controlled manner, which gives further boost to promhitgt

Our work demonstrates that even in the cutting-edge field of
functional programming, shopworn but rock-solid techigids ex-
ist that are worth considering for new projects.

2. TTCN-3

TTCN-3 has been developed by the Methods for Testing and-Spec
fication Technical Committee (TC-MTS) at the European Tatec
munications Standards Institute (ETSI). The predece$sorGN-
3, TTCN-2 (“Tree and Tabular Combined Notation”), was a tadi
tabular notation for expressing tests, and incorporatedopol-
specific terminoloy. In constrast, TTCN-3 is a full-fledgemp
gramming language, targeted at specifying and writing sages
for system components, protocols or systems in distribsetthgs.
The underlying idea of TTCN-3 is that test suites for a specifi
“system under test” (oBUT for short) or protocol are specified
and written in TTCN-3, independently from the implemeraati
platform of the SUT, the programming language used to implem
the SUT, the internals of the TTCN-3 run-time system, or othe
specifics resulting from deploying the system to a specifiase
Public TTCN-3 test suites exist for IPv6, DHCPv6, and SIP.

2.1 TheTTCN-3 Programming L anguage

TTCN-3 is an imperative programming language with conaurre
programming features based on the actor model (Hewitt et al.
1973), and additional constructs for writing test casessyntax is
loosely based on other popular imperative programmingdaggs
that distinguish between expressions and statementsavwsdon
elements from the Algol family (such as Algol-style assigmts)
and C (such as curly braces as block delimiters).

TTCN-3 has a partially static type system with a set of base
types including integers, floats, and character stringd) wispe-
cial base typererdict for denoting test results, and with user-
defined composite types. Composite types include orderédian
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module MyTestModule {
type record MyMessageType {
integer seqNum,
record of charstring data
}
type port MyPort message {
in MyMessageType
}
type component MyTestComponent {
timer timerl;
port MyPort portl
}
template MyMessageType msgTemplate :
seqNum := (100 .. 200),
data {*, permutation("hans", "fritz", "franz"), 7}
}
testcase myFirstTestcase() runs on MyTestComponent {
timerl.start(60.0);
alt {
[1 portl.receive(msgTemplate) {
setverdict (pass);
}
[1 timerl.timeout {
setverdict(fail);

}

{

}
}
}

Figure1l. Example TTCN-3 test module

ordered product types (calledcordsandsets respectively), sum
types (calleduniong, and a plethora of ordered and unordered ag-
gregate types. The language also has a notion of subtyppdla
static types, only part of which is checked statically—thstris
done at run time. The programer defines a new subtype of an al-
ready existing type by restricting its values, e.g. via aubes, size
restrictions, or patterns similar to regular expressions.

The TTCN-3 programming language also incorporates a run-
time pattern-matching mechanism. Patterns—catidplates—
are run-time values. Templates specify the shape of a valitie,
restrictions on the variable parts. (In contrast to ML-stghttern
matching, a TTCN-3 template is not a binding construct.)

TTCN-3 has three different parameter-passing mechanisms,
corresponding to call-by-copy, call-by-value-resultdacall-by-
reference. In contrast to many other languages supportigjla
by-value evaluation strategy, TTCN-3 has no explicit refiees—
even structured data types such as arrays are copied onrassit
The absence of references incurs significant run-time easttout
also obviates the need for automatic memory management.

Actors are calledcomponentsn TTCN-3. The SUT is rep-
resented by a virtuabystem componenit communicates via
messages with the test suite. Components declare comrmunica
tion endpoints callegortsthat support asynchronous sending and
receiving. The language has a selective-communicatiorhasec
nism calledalt for formulating complex communication patterns.

FFI

CD

TE sut

SA

RTS

™ TL CH PA

Figure 2. TTCN-3 run-time environment

MyMessageType is a user-defined record type that contains an
integer and a sequence (“record of”) of strings.

MyPort specifies the type of a communication endpoint, which
can receive incoming values of tyggMessageType. Components
of typeMyTestComponent Own a communication pogort1 and
a timer namedtimer1. A timer is started with a specific duration
and eventually signals the end of that duration.

The templatasgTemplate matches values 0fyMessageType
type whoseseqNun field is an integer value in the range from 100
to 200, and itlata field is a sequence that begins with an arbi-
trary number of arbitrary strings), continues with a permutation
of three specific strings, and ends with an arbitrary strit)g (

The last definition defines a test case namgitirstTestcase,
which runs on components of typgTestComponentType. The
first statement of the body of the testcase starts the tintelined
with a maximal duration of 60 seconds. Taet statement loops
until either a message matching templaégTemplate is received
overportl, or the timertimer1 expires. Thesetverdict state-
ment sets the test outcome accordingly.

2.2 TTCN-3 Run-Time Environment

The TTCN-3 standard defines different kinds of APIs that tens
tute a test environment for a SUT. From a programming languag
perspective, they can be broadly categorized into two kiridisnc-
tionality:

e parts of the language runtime system (RTS) startup primi-
tives (TM), logging primitives (TL), primitves for actor oo
munication (CH), and timer primitives (PA)

e FFI bindings for the SUT data serialization/deserialization
code (CD), primitives for actor communication with the SUT
(SA)

A TTCN-3 compiler assumes the existence of implementatidns
these APIs. The standards defines APIs for C and Java bindings
Figure 2 gives an overview of the different components ined|
in a running TTCN-3 test system. The TE (“test executableihe
ponent is compiled TTCN-3 program code. The CH APl is devised
such that it is possible to deploy the TE—or parts of it—onidét
hosts with message communication. TTCN-3 code never direct
communicates with the SUT. All communication is routed tiglo

The alt construct addresses some of the same problems as thgne S, applying the SUT-specific serialization/desezélion

selective-communication combinators of Concurrent ML dRe
1999), but is less compositional and entirely based onmpliin
alt construct takes a snapshot of the various synchronizatien o
jects (ports, timers, components), and then refers to tregishot to
ensure consistency among alternatives. A semi-formalraijnal
semantics” in the TTCN-3 standard uses annotated flow charts
specify the concurrency substrate.

TTCN-3 has a simple module system: Modules group named
definitions, which can be imported by other modules.

Figure 1 contains the code of an TTCN-3 module. It shows one
moduleMyTestModule, which contains five definitions:

Using functional programming to implement TTCN-3

(CD) in between.

3. Corporate Environment

intaris GmbH is a small software development and consuttomg-
pany in Freiburg im Breisgau, Germany. A major focus of theco
pany is in software testing, mainly for the embedded markgi-
ical customers are companies from the industrial sectoaréas
such as process automation or railroad engineering.

TTCN-3 is well-established in the testing business, esigci
for protocol testing in communication technologies. Thedse
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Figure 3. Compiler architecture

of typical customers of intaris GmbH with respect to a TTCN-3
test environment gave rise to the development of a custodema
TTCN-3 compiler with its own requirements, which include:

e The target language of the compiler has to be (portable) C

Thus, in its raw form, the grammar is unsuitable for consuompt
by a parser generator, and the main effort of constructingragp
was spent on transforming the grammar into SLR(1) form.

This process was aided by the parser generator used: Essence
is an LR parser generator, which is itself automaticallyegated
from a generic LR parser via partial evaluation (SperberEmd-
mann 2000). Essence was originally built as a research typeto
to validate the effectiveness of partial evaluation, batvpd well-
suited to the task at hand: The interpretive Essence paasent
directly, accepting the grammar and the input, and it stzatsing
immediately, without constructing parser or lookaheadefirst.

This reduced turnaround time compared to traditional geoer
based or macro-based approaches (Flatt et al. 2004)—ang man
turnarounds were needed to massage the grammar into SOREL).
(purely functional) code of the generated parser is exthgfast.

We developed the scanner with conventional techniques: We
first wrote a minimalistic scanner generator (callésbnenbery
to go with Essence, and used it to build the TTCN-3 scanner.

4.2 Static Processing

The abstract syntax tree is represented using a generidygsa
callednode the implementation of nodes borrows heavily from a
similar data structure used by the Scheme 48 byte-code tempi
Each node carries aperator, a source location, an arbitrary num-
ber of arguments (each of which may be another node, or some
constant), and a property list mapping names to arbitralyega
Dealing with nodes, Scheme’s macros and latent typing comoe i
full play: Various macros define automatic-deconstructamilities

' and pattern patching. Latent typing enables attachindrariiin-

because C/C++ is the only available option for many embedded tqrmation to a node as static processing progresses. Mergiov

devices (besides assembler).
e Some target platforms run without an operation system. Etmu

allows various types of generic processing, such as freahla
analysis, syntax-tree serialization, or automatic cosieerto a dot

be possible to generate code that does not require an existin input file to draw a syntax trek.

task/thread scheduler.
e It is essential for some target platforms to make predistion

The parser produces an abstract-syntax tree represented as
node. Nodes operator types are defined like this:

about the resource usage of a test environment to be deployed (define-node-type send-statement (exp param to-clause))
e Solid software development methods should be used so thatProcedures can then use a variety of constructs to dispatch o

software building on the compiler can meet substantialtgafe
and integrity standards.

None of the available TTCN-3 implementations meets all ekth
requirements. Moreover, no open-source implementatitstssthat
could be modified to meet them.

4. Compiler Implementation

Figure 3 shows the overall layout of the compiler, which isneo
pletely traditional; the stages are described in the fathgwsub-
sections. The Scheme backend was not part of the requireniemt
greatly simplifies testing, as it is possible to generateecodmpile
and run it all within the running Scheme 48 session withowt ha
ing to produce intermediate files, invoke the compiler andthe
resulting executable.

41 Syntax Analysis

The syntax of TTCN-3 is quite complex: The grammar listed in
the TTCN-3 specification (ETSI ES 201 873-1 V3.4.1 2008-09)
contains more than 1000 productions. It is highly ambigude
grammar assumes that an identifier binding has already teen r
solved prior to parsing to some degree. Here is an excerpt:

161. FunctionIdentifier ::= Identifier

177. FunctionRef ::= [GlobalModuleId Dot]
(FunctionIdentifier | ExtFunctionIdentifier)

270. ExtFunctionIdentifier ::= Identifier

Using functional programming to implement TTCN-3

node operators, and deconstruct the node. Here is a congisgo
example that uses th®de-type-case macro:

(define (process-statement global-env local-env statement)
(node-type-case statement
((send-statement port param to-clause)
(let ((port-type (process-port/type
global-env local-env port)))
(process-expression/port-argument
global-env local-env port-type ’out param)
(process-to-clause global-env local-env to-clause)))

o))

Static processing comprises a total of 8 passes over theeour
code. These are needed because the top-level construdte of t
language are interdependent in various ways, and do nottoeed
appear in order in a TTCN-3 program. In particular, types may
include restrictions (range restrictions, value listgesgps etc.)
described by static expressions, which in turn are typedrhis
requires careful staging and various topological sorts@tbe way.
Thankfully, expression processing needs only one passrforpe
type checking and compute statically available values. tfJpes
and values are attached to the abstract-syntax nodes a=ripeep

1statically-typed languages offer essentially two choieseplicate this
kind of representation: 1. Each operator corresponds toramsund in an
algebraic data type, which allows static type checking dfgpa matching,
but makes generic processing difficult. 2. A generic reprieg®n abandons
static type checking, and requires sum types for every gaaneeded by
the compiler—this clutters the code with artificial pattematching.
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4.3 CPS Transformation

The central part of the compiler is the Transformational @iben
(TC) (Kelsey and Hudak 1989) of the T project (Kranz et al.
2004). The TC uses a single intermediate representaticefaral
different stages of the compiler. In Scheme 48 itself, theiFC
both the central part of the Pre-Scheme compiler (KelseyReas
1995), which compiles the VM to C, as well as the native-code
compiler. Still, the TC is in no way tied to Scheme as the laggu

to be compiled. (The original TC was used to compile Pascal.)

are more closely intertwined. This helped with experimiyntar-
ifying the TTCN-3 execution model. It was particularly vahle
in implementing the complicated template matching medmani
We initially developed the code for handling sequence padte-
which includes constructs such as the Kleengith length restric-
tions and arbitrary permutations—in Scheme, performecotian
lifting (Johnsson 1985) on it and transliterated the retsu@@.

6. Conclusion

In its latest incarnation as part of Scheme 48, the TC uses awnen the project originally started, it did not seem suchrd-te

CPS intermediate representation. In contrast to CPS reqtsons
that use different top-level constructs for regular alxstoas and
continuations, the TC represents alhodes by a single data type.
Tags attached to to th& nodes divide them into three classes,
depending on how the value of the form is used. Continuatoas

) forms passed as continuation arguments to primops. Jugngtsar
are) forms whose calling points have been identified and which are
all within the same procedure All other A forms are procedures.

The CPS nodes form a graph which is manipulated imperatively
avoiding the need to reconstruct an entire tree when a oensf
mation affects only a small parts of it. This approach, ad a=l
the uniformity of the representation makes various tramséions
such as contification particularly easy to implement. (Terép-
resentation has since been re-discovered and shown to be@up
to direct-style representations in several ways (Kenn&fy?)

The TC provides various tools for dealing with the CPS rep-
resentations, including a library for constructing CP$1sfarma-
tions, a pretty printer, and a generic optimizer which capd®am-
eterized with simplifiers for primops of the particular larage be-
ing compiled. These proved valuable for developing the C&%st
formation at the heart of the TTCN-3 compiler. Generallyings
CPS helped resolve the semantics of some complicated lgagua
constructs, specifically that eflt and snapshots, as CPS makes
explicit the implicit changes in the control flow of these strcts.

Still, the complexity of the language makes for a ratherdarg
CPS transformation (4000loc), despite the prior expaneiatme
code to core constructs. The complex semantics of refesence
mutation, and argument passing complicate the task en@isnou

4.4 Code Generation

The code generated by the Scheme backend is just the elatborat
CPS code; the code generator is less than 200 lines. It isrguesi
because the target language is higher-order, has autometory
management, and supports threads natively.

bly large task, and we probably would have started on it efen i
requirements had forced us to use a more conventional lagegua
Along the way, the complexity of TTCN-3 gradually revealéd i
self, and it became clear that conventional technologieddvrave
stretched the required effort far beyond the resourcedadai

to us. The task only became tractable through the use of func-
tional programming, the interactive Scheme 48 developragst
tem, and available infrastructure for constructing coemsil For-
tunately, Scheme, Essence and the Transformational Centaitl

not accreted any digital mould, and were up to the task.
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